Publications by authors named "Quanjun Tang"

The unsatisfactory oxygen reduction reaction (ORR) kinetics caused by the inherent lean-oxygen marine environment brings low power density for metal-dissolved oxygen seawater batteries (SWBs). In this study, we propose a seawater/electrode interfacial engineering strategy by constructing a hydrophobic coating to realize enhanced mass transfer of dissolved oxygen for the fully immersed cathode of SWBs. Accumulation of dissolved oxygen from seawater to the catalyst is particularly beneficial for improving the ORR performance under lean-oxygen conditions.

View Article and Find Full Text PDF

A dissolved-oxygen seawater battery (SWB) can generate electricity by reducing dissolved oxygen and sacrificing the metal anode at different depths and temperatures in the ocean, acting as the basic unit of spatially underwater energy networks for future maritime exploration. However, most traditional oxygen reduction reaction (ORR) catalysts are out of work at such ultralow dissolved oxygen concentration. Here, we proposed that the electronic axial stretching of the catalyst is essentially responsible for enhancing the catalyst's sensitivity to dissolved oxygen.

View Article and Find Full Text PDF

Seawater batteries (SWBs) are a key part of the future underwater energy network for maritime safety and resource development due to their high safety, long lifespan, and eco-friendly nature. However, the complicated seawater composition and pollution, such as the S, usually poison the catalyst and lead to the degradation of the battery performance. Here, Zn single-atom catalysts (SACs) were demonstrated as effective oxygen reduction reaction catalysts with high anti-poisoning properties by density functional theory calculation and the Zn SACs anchoring on an N, P-doped carbon substrate (Zn-SAC@PNC) was synthesized by a one-pot strategy.

View Article and Find Full Text PDF