Publications by authors named "Quanjie Wang"

Background: The relationship between sexual dysfunction and burnout among physicians remains unclear.

Aim: To investigate the frequency of sexual dysfunction among physicians in primary hospital and explore the association between sexual dysfunction and burnout.

Methods: This study was a cross-sectional survey conducted through a questionnaire.

View Article and Find Full Text PDF

Efficient heat dissipation is crucial for the performance and lifetime of high electron mobility transistors (HEMTs). The thermal conductivity of materials and interfacial thermal conductance (ITC) play significant roles in their heat dissipation. To predict the thermal properties of AlxGa1-xN and the ITC of GaN/AlxGa1-xN in HEMTs, a dataset with first-principles accuracy was constructed using concurrent learning method and trained to obtain an interatomic potential employing deep neural networks (DNN) method.

View Article and Find Full Text PDF

This study addresses a crucial challenge in two-dimensional (2D) material-based electronic devices-inefficient heat dissipation across the van der Waals (vdW) interface connecting the 2D material to its three-dimensional (3D) substrate. The objective is to enhance the interfacial thermal conductance (ITC) of 2D/3D heterostructures without compromising the intrinsic thermal conductivities (κ) of 2D materials. Using 2D-MoS/3D-GaN as an example, a novel strategy to enhance both the ITC across 2D/3D interface and κ of 2D material is proposed by introducing a controlled concentration (ρ) of vacancy defects to substrate's bottom surface.

View Article and Find Full Text PDF

An amorphous layer is commonly found at the interfaces of heterostructures due to lattice and thermal mismatch between dissimilar materials. While existing research has explored the impact of these layers on interfacial thermal transport, a comprehensive understanding of the underlying microscopic mechanisms remains essential for advancing thermal nanodevice development. Through phonon wave packet simulations, we investigated the dynamic behaviors of phonons crossing the amorphous interlayer at the GaN/AlN interface from the mode level.

View Article and Find Full Text PDF

Heat dissipation in two-dimensional (2D) material-based electronic devices is a critical issue for their applications. The bottleneck for this thermal issue is inefficient for heat removal across the van der Waals (vdW) interface between the 2D material and its supporting three-dimensional (3D) substrate. In this work, we demonstrate that an atomic-scale thin amorphous layer atop the substrate surface can remarkably enhance the interfacial thermal conductance (ITC) of the 2D-MoS/3D-GaN vdW interface by a factor of 4 compared to that of the untreated crystalline substrate surface.

View Article and Find Full Text PDF

Accurate interatomic force fields are of paramount importance for molecular dynamics simulations to explore the thermal transport at the GaN/AlN heterogenous interface, which is a key factor hindering heat dissipation and limiting the performance of GaN power electronic devices. In this work, an interatomic potential (force field) based on a deep neural network technique and first-principles calculations is developed for N-Ga-Al semiconductors to predict the elastic and thermodynamic properties. Using our deep neural network potential (NNP), the precise structural features, elastic constants, and thermal conductivities of GaN, AlN, and their alloy are obtained, which are well consistent with those from experiments and first-principles calculations.

View Article and Find Full Text PDF

Grain boundaries (GBs) widely exist in black phosphorene (BP), which plays a vital role in determining the properties of 2D materials. Significant GB effect on the thermal boundary resistance in BP structures is found by using molecular dynamics calculations and lattice dynamic analysis. A remarkably high interface thermal resistance is observed.

View Article and Find Full Text PDF