Noncanonical micropeptides or called novel microproteins, i.e., polypeptides mostly under 10 kDa, are encoded by genomic sequences that have been previously annotated as noncoding but now known as small open reading frames (sORFs).
View Article and Find Full Text PDFDrug resistance limits the efficacy of chemotherapy for colorectal cancer liver metastasis (CRLM). However, the evolution of CRLM during drug treatment remains poorly elucidated. Multi-omics and treatment response data from 115 samples of 49 patients with CRLM undergoing bevacizumab (BVZ)-based chemotherapy show little difference in genomic alterations in 92% of cases, while remarkable differences are observed at the transcriptomic level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2023
Drug resistance continues to impede the success of cancer treatments, creating a need for experimental model systems that are broad, yet simple, to allow the identification of mechanisms and novel countermeasures applicable to many cancer types. To address these needs, we investigated a set of engineered mammalian cell lines with synthetic gene circuits integrated into their genome that evolved resistance to Puromycin. We identified DNA amplification as the mechanism underlying drug resistance in 4 out of 6 replicate populations.
View Article and Find Full Text PDFSci Transl Med
October 2023
H3 K27-altered diffuse midline glioma is a highly lethal pediatric-type tumor without efficacious treatments. Recent findings have highlighted the heterogeneity among diffuse midline gliomas with different locations and ages. Compared to tumors located in the brain stem and thalamus, the molecular and clinicopathological features of H3 K27-altered spinal cord glioma are still largely elusive, thus hindering the accurate management of patients.
View Article and Find Full Text PDFSingle-cell multi-omics can provide a unique perspective on tumor cellular heterogeneity. Most previous single-cell whole-genome RNA sequencing (scWGS-RNA-seq) methods demonstrate utility with intact cells from fresh samples. Among them, many are not applicable to frozen samples that cannot produce intact single-cell suspensions.
View Article and Find Full Text PDFMetastatic cancer is associated with poor patient prognosis but its spatiotemporal behavior remains unpredictable at early stage. Here we develop MetaNet, a computational framework that integrates clinical and sequencing data from 32,176 primary and metastatic cancer cases, to assess metastatic risks of primary tumors. MetaNet achieves high accuracy in distinguishing the metastasis from the primary in breast and prostate cancers.
View Article and Find Full Text PDFEnviron Sci Technol
November 2021
spp. are well-known exoelectrogenic microorganisms that often predominate acetate-fed biofilms in microbial fuel cells (MFCs) and other bioelectrochemical systems (BESs). By using an amplicon sequence variance analysis (at one nucleotide resolution), we observed a succession between two closely related species (98% similarity in 16S RNA), and , in the long-term studies (20 months) of MFC biofilms.
View Article and Find Full Text PDFUnderstanding microbial interactions in the methanogenesis system through quorum sensing (QS) is very important for system optimization. Known QS genes were collected and classified into seven groups based on the signal molecules, which were used for constructing a hierarchical quorum sensing database (QSDB). QSDB containing 39,981 QS genes of seven QS groups was constructed and QS genes were analyzed with QSDB.
View Article and Find Full Text PDFTemozolomide (TMZ) is an oral alkylating agent used for the treatment of glioblastoma and is now becoming a chemotherapeutic option in patients diagnosed with high-risk low-grade gliomas. The O-6-methylguanine-DNA methyltransferase (MGMT) is responsible for the direct repair of the main TMZ-induced toxic DNA adduct, the O6-Methylguanine lesion. MGMT promoter hypermethylation is currently the only known biomarker for TMZ response in glioblastoma patients.
View Article and Find Full Text PDFAn expanding list of chemicals may permeabilize bacterial cells and facilitate horizontal gene transfer (HGT), which enhances propagation of antibiotic resistance genes (ARGs) in the environment. Previous studies showed that 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), an ionic liquid, can facilitate HGT of some ARGs among bacteria. However, the dynamic response of a wider range of ARGs and associated mobile genetic elements (MGEs) in different environments is unknown.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
August 2019
The human brain contains billions of highly differentiated and interconnected cells that form intricate neural networks and collectively control the physical activities and high-level cognitive functions, such as memory, decision-making, and social behavior. Big data is required to decipher the complexity of cell types, as well as connectivity and functions of the brain. The newly developed single-cell sequencing technology, which provides a comprehensive landscape of brain cell type diversity by profiling the transcriptome, genome, and/or epigenome of individual cells, has contributed substantially to revealing the complexity and dynamics of the brain and providing new insights into brain development and brain-related disorders.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
December 2021
Detection of DNA copy number alteration in cancer cells is critical to understanding cancer initiation and progression. Widely used methods, such as DNA arrays and genomic DNA sequencing, are relatively expensive and require DNA samples at a microgram level, which are not avaiblable in certain situations like clinical biopsies or single-cell genomes. Here, we developed an alternative method-CNAPE to computationally infer copy number alterations from gene expression data.
View Article and Find Full Text PDFLow-grade gliomas almost invariably progress into secondary glioblastoma (sGBM) with limited therapeutic option and poorly understood mechanism. By studying the mutational landscape of 188 sGBMs, we find significant enrichment of TP53 mutations, somatic hypermutation, MET-exon-14-skipping (METex14), PTPRZ1-MET (ZM) fusions, and MET amplification. Strikingly, METex14 frequently co-occurs with ZM fusion and is present in ∼14% of cases with significantly worse prognosis.
View Article and Find Full Text PDFExoelectrogens acclimated from the environment are the key to energy recovery from waste in bioelectrochemical systems. However, it is still unknown how these bacteria are selectively enriched on the electrode. Here we confirmed for the first time that the electric field (EF) intensity selects exoelectrogens from wastewater using an integrated electrovisual system with a gradient EF.
View Article and Find Full Text PDFThe RNA exosome complex targets AU-rich element (ARE)-containing mRNAs in eukaryotic cells. We identified a transcription factor, ZSCAN10, which binds to the promoters of multiple RNA exosome complex subunits in pluripotent stem cells to maintain subunit gene expression. We discovered that induced pluripotent stem cell clones generated from aged tissue donors (A-iPSC) show poor expression of ZSCAN10, leading to poor RNA exosome complex expression, and a subsequent elevation in ARE-containing RNAs, including glutathione peroxidase 2 (Gpx2).
View Article and Find Full Text PDFThe propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China.
View Article and Find Full Text PDFThis study investigated the characteristics of 10 subtypes of antibiotic resistance genes (ARGs) for sulfonamide, tetracycline, β-lactam and macrolide resistance and the class 1 integrase gene (intI1). In total, these genes were monitored in 24 samples across each stage of five full-scale pharmaceutical wastewater treatment plants (PWWTPs) using qualitative and real-time quantitative polymerase chain reactions (PCRs). The levels of typical ARG subtypes in the final effluents ranged from (2.
View Article and Find Full Text PDFThe spread and propagation of antibiotic resistance genes (ARGs) is a worldwide public health concern. Ionic liquids (ILs), considered as "environmentally friendly" replacements for industrial organic solvents, have been widely applied in modern industry. However, few data have been collected regarding the potential ecological and environmental risks of ILs, which are important for preparing for their potential discharge into the environment.
View Article and Find Full Text PDFAntibiotic resistance genes (ARGs) in livestock feedlots deserve attention because they are prone to transfer to human pathogens and thus pose threats to human health. In this study, the occurrence of 21 ARGs, including tetracycline (tet)-, sulfonamide (sul)-, plasmid-mediated quinolone (PMQR)- and macrolide-resistance (erm) genes were investigated in feces and adjacent soils from chicken, swine, and cattle feedlots in Northern China. PMQR and sul ARGs were the most prevalent and account for over 90.
View Article and Find Full Text PDFA feasible and rapid analysis for the simultaneous determination of sulfonamides (SAs), tetracyclines (TCs), fluoroquinolones (FQs), macrolides (MACs) and nitrofurans (NFs) in livestock manure and soils was established by solid-phase extraction (SPE)-ultra-performance liquid chromatography (UPLC)-tandem mass spectrometry (MS/MS). A total of 32 manure and 17 amended soil samples from the Liaoning and Tianjin areas in Northern China were collected for analysis. The largest detected frequencies and concentrations in manure samples were those of TCs (3326.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2013
The transfer of antibiotic resistance genes (ARGs), a new type of environmental pollutants, could have more adverse effects on the environment than the ARGs themselves, while the horizontal gene transfer (HGT) could be the most important propagation pathways of the ARGs, being one of the reasons for the growing pollution of ARGs in the environment. This paper systematically elaborated the molecular elements of the horizontal transfer of ARGs and the related affecting factors, which was of significance for investigating the molecular mechanisms of the horizontal transfer of the ARGs. In combining with the phylogenetic mechanisms of multiple antibiotic resistances, this paper also provided effective strategies to reduce the transfer and proliferation of ARGs in the environment.
View Article and Find Full Text PDFThe propagation of antibiotic resistance genes (ARGs) represents a global threat to both human health and food security. Assessment of ARG reservoirs and persistence is therefore critical for devising and evaluating strategies to mitigate ARG propagation. This study developed a novel, internal standard method to extract extracellular DNA (eDNA) and intracellular DNA (iDNA) from water and sediments, and applied it to determine the partitioning of ARGs in the Haihe River basin in China, which drains an area of intensive antibiotic use.
View Article and Find Full Text PDF