Publications by authors named "Quanchao Du"

The development of a lasing wavelength switch, particularly from a single inorganic gain material, is challenging but highly demanded for advanced photonics. Nonetheless, all current lasing emission of inorganic gain materials arises from band-edge states, and the inherent fixed bandgap limitation of the band-edge system leads to the inaccessibility of lasing wavelength switching from a single inorganic gain material. Here the realization of a single inorganic gain material-based lasing wavelength switch is reported by proposing an alternative lasing emission strategy, that is, lasing emission from surface gain.

View Article and Find Full Text PDF

Antibiotic vancomycin (Van) is often used as the drug of last resort to treat methicillin resistant Staphylococcus aureus. Due to the emergence of Van-resistant microbes, it is necessary to continuously design strategies to increase the efficacy of Van against resistant cells. In this study, an efficient method of bio-conjugating Van to bacteria is proposed using near-infrared (NIR)-light activation.

View Article and Find Full Text PDF

An intelligent drug release system that is triggered into action upon sensing the motion of swarmer P. mirabilis is introduced. The rational design of the drug release system focuses on a pNIPAAm-co-pAEMA copolymer that prevents drug leakage in a tobramycin-loaded mesoporous silica particle by covering its surface via electrostatic attraction.

View Article and Find Full Text PDF

Boron carbide/graphitic carbon nitride (B4C/g-C3N4) p-n hetero-junction photocatalyst with an internal electric field was synthesized by a facile solvent evaporation method and characterized by field emission scanning electron microscope (FESEM), UV-Vis diffuse reflectance spectra (UV-Vis DRS), photoluminescence spectra (PL), etc. Photocatalytic activity of the composite B4C/g-C3N4 loaded with Pt co-catalyst was evaluated using CO2 conversion to CH4 with H2 as the hydrogen source and reductant under visible light irradiation. The coupling of p-type B4C with n-type g-C3N4 significantly improved the performance of photocatalytic CO2 reduction; with the optimum B4C mass fraction of 1/6, the composite photocatalyst showed approximately 6 and 8 times higher CH4 generation rate than g-C3N4 and B4C, respectively.

View Article and Find Full Text PDF

The role of replacing Na+ with H+ of titanate in promoting photocatalytic performance was investigated. The experimental results showed that H2Ti3O7 and Na2Ti3O7 catalysts with the same high exposed (010) facet had the similar light absorption capacity, TiO6 octahedral structure, and specific surface area. By comparing to Na2Ti3O7, H2Ti3O7 had longer lifetime and higher separation efficiency of the photo-generated electron-hole pairs, and also had higher density of surface oxygen vacancies, which resulted in the excellent performances for photocatalytic hydrogen production and dye degradation reactions.

View Article and Find Full Text PDF