The single-function agents with wide-spectrum activity which tend to disturb the ecological balance of oral cavity cannot satisfy dental treatment need. A multi-functional agent with specifically targeted killing property and in situ remineralization is warranted for caries management. A novel multi-functional agent (8DSS-C8-P-113) consisting of three domains, i.
View Article and Find Full Text PDFEnamel adhesion is acknowledged as durable; however, achieving long-lasting dentin adhesion remains a formidable challenge due to degradation of exposed collagen matrix after acid-etching of dentin. The idea of developing an enamel-like adhesion interface holds great promise in achieving enduring dentin adhesion. In this study, we constructed an enamel-like adhesion interface using a rapid remineralization strategy comprising an acidic primer and a rapid remineralization medium.
View Article and Find Full Text PDFBackground: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs.
View Article and Find Full Text PDFObjective: Extrafibrillar demineralization is considered to be an ideal solution for addressing the durability of resin-dentin bonding interfaces. However, its theoretical basis is contradictory to ionization equilibrium of hydroxyapatite dissolution. In this study, various calcium chelators were selected as dentin conditioners to explore the essence of dentin demineralization with chelators and its effect on resin-dentin adhesion.
View Article and Find Full Text PDFEnamel has good optical and mechanical properties because of its multiscale hierarchical structure. Biomimetic construction of enamel-like 3D bulk materials at nano-, micro-, mesh- and macro-levels is a challenge. A novel facile, cost-effective, and easy large-scale bottom-up assembly strategy to align 1D hydroxyapatite (HA) nanowires bundles to 3D hierarchical enamel structure with the nanowires bundles layer-by-layer interweaving orientation, is reported.
View Article and Find Full Text PDFPhenol-amine coatings have attracted significant attention in recent years owing to their adjustable composition and multifaceted biological functionalities. The current preparation of phenol-amine coatings, however, involves a chemical reaction within the solution or interface, resulting in lengthy preparation times and necessitating specific reaction conditions, such as alkaline environments and oxygen presence. The facile, rapid, and eco-friendly preparation of phenol-amine coatings under mild conditions continues to pose a challenge.
View Article and Find Full Text PDFDentin bond interface stability is the key issue of dental adhesion in present clinical dentistry. The concept of selective extrafibrillar demineralization has opened a new way to maintain intrafibrillar minerals to prevent interface degradation. Here, using ultra-high-molecular-weight sodium polyacrylate [Carbopol (Carbo) > 40 kDa] as a calcium chelator, we challenge this concept and propose a protocol for reliable dentin dry bonding.
View Article and Find Full Text PDFResearch (Wash D C)
April 2023
The durability of the resin-dentin bonding interface is a key issue in clinical esthetic dentistry. Inspired by the extraordinary bioadhesive properties of marine mussels in a wet environment, we designed and synthetized N-2-(3,4-dihydroxylphenyl) acrylamide (DAA) according to the functional domain of mussel adhesive proteins. DAA's properties of collagen cross-linking, collagenase inhibition, inducing collagen mineralization in vitro, and as a novel prime monomer for clinical dentin adhesion use, its optimal parameters, and effect on the adhesive longevity and the bonding interface's integrity and mineralization, were evaluated in vitro and in vivo.
View Article and Find Full Text PDFAltern Ther Health Med
March 2023
Context: Drug-resistant tuberculosis (TB), especially multidrug-resistant TB, has continued to increase and pan-drug-resistant TB and even fully drug-resistant TB have emerged, bringing great challenges to the treatment of TB. Development of new, safe, and effective antituberculosis drugs is an urgent need.
Objective: The study intended to evaluate the use of the network pharmacology method to comprehensively and systematically analyze the network relationship of Kushen's main components, targets, and signaling pathways, aiming to provide new ideas and clues for an in-depth study of the mechanism of Kushen's main components in the treatment of pulmonary TB.
Int J Mol Sci
November 2022
Glutamate is a pivotal excitatory neurotransmitter in mammalian brains, but excessive glutamate causes numerous neural disorders. Almost all extracellular glutamate is retrieved by the glial transporter, Excitatory Amino Acid Transporter 2 (EAAT2), belonging to the SLC1A family. However, in some cancers, EAAT2 expression is enhanced and causes resistance to therapies by metabolic disturbance.
View Article and Find Full Text PDFObjectives: This study was performed to evaluate the occlusion of monetite paste on dentine tubule and provide a new potential method for treating dentine hypersensitivity.
Methods: Calcium oxide, strontium chloride, and polyethylene glycol phosphate were mixed in a certain proportion and ground in a planetary ball mill. The reaction was carried out by adjusting the pH to obtain monetite and hydroxyapatite paste.
We aimed to analyze the expression of Cyclin D1 (CCND1) gene in ovarian cancer and the influence of silencing its expression on ovarian cancer cells based on the Oncomine database. The expression of CCND1 gene in ovarian cancer was analyzed by utilizing the relevant information in different tumors and Oncomine database. The correlation between CCDN1 expression level and prognosis of ovarian cancer was analyzed by the online database Kaplan-Meier (kmplot.
View Article and Find Full Text PDFObjective: To investigate the antibiofilm and remineralising effects of the dual-action peptide GA-KR12 on artificial enamel caries.
Materials And Methods: Enamel blocks with artificial caries were treated with sterilised deionised water as control or GA-KR12. The blocks underwent biochemical cycling with Streptococcus mutans for 3 weeks.
Objective: Resin-based dental adhesion is mostly utilized in minimally invasive operative dentistry. However, improving the durability and stability of resin-dentin bond interfaces remain a challenge. Graphene quantum dots (GQDs) reinforced by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) were introduced to modify the resin-dentin bond interfaces, thereby promoting their durability and stability.
View Article and Find Full Text PDFThe reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues.
View Article and Find Full Text PDFObjective: To investigate the antibacterial and remineralising effects of a novel dual-action antimicrobial peptide, GA-KR12, on artificial dentine caries.
Methods: Human dentine blocks with artificial carious lesions were allocated to two groups - Group 1: dentine blocks treated with the novel antimicrobial peptide GA-KR12 twice daily; Group 2: dentine blocks received water as the negative control. Two groups underwent Streptococcus mutan biofilm-remineralisation cycles at 37 °C for 7 days.
ACS Appl Mater Interfaces
July 2021
Existing single-functional agents against dental caries are inadequate in antibacterial performance or mineralization balance. This problem can be resolved through a novel strategy, namely, the construction of an antibiofouling and mineralizing dual-bioactive tooth surface by grafting a dentotropic moiety to an antimicrobial peptide. The constructed bioactive peptide can strongly adsorb onto the tooth surface and has beneficial functions in a myriad of ways.
View Article and Find Full Text PDFObjectives: To develop a novel dual-action peptide with antimicrobial and mineralising properties.
Methods: A novel peptide, namely GA-KR12, was synthesised through grafting gallic acid to KR12. The secondary structure of GA-KR12 was evaluated by circular dichroism spectroscopy.
Antimicrobial peptides are naturally occurring protein molecules with antibacterial, antiviral and/or antifungal activity. Some antimicrobial peptides kill microorganisms through direct binding with negatively charged microbial surfaces. This action disrupts the cytoplasmic membrane and leads to the leakage of the cytoplasm.
View Article and Find Full Text PDFThe objective of this study was to perform a comprehensive review of the use of antimicrobial peptides for the prevention and treatment of dental caries. The study included publications in the English language that addressed the use of antimicrobial peptides in the prevention and treatment of caries. These publications were also searchable on PubMed, Web of Science, Embase, Scopus, the Collection of Anti-Microbial Peptides and the Antimicrobial Peptide Database.
View Article and Find Full Text PDFDental plaque is one type of biofouling on the tooth surface that consists of a diverse population of microorganisms and extracellular matrix and causes oral diseases and even systematic diseases. Numerous studies have focused on preventing bacteria and proteins on tooth surfaces, especially with anti-biofouling coatings. Anti-biofouling coatings can be stable and sustainable over the long term on the tooth surface in the complex oral environment.
View Article and Find Full Text PDF