Purpose: We investigated the pharmacological effect of TRPV1 antagonists in anesthetized rodent models of bladder function.
Materials And Methods: The TRPV1 antagonists JNJ17203212 and JYL1421 were evaluated in the anesthetized rat volume induced micturition reflex model. JNJ17203212 was further evaluated in this model in capsaicin (Sigma) desensitized rats, and in rat capsaicin and mouse citric acid models of irritant induced detrusor overactivity.
Purpose: We investigated the role of prostacyclin on afferent modulation of the micturition reflex using the novel selective prostacyclin receptor antagonist RO3244019 in rat models of bladder function.
Materials And Methods: The effects of RO3244019 on urodynamic parameters were evaluated in 3 rat models. In the anesthetized isovolumetric bladder contraction and the volume induced micturition reflex (Refill) models the effects of RO3244019 and chronic capsaicin desensitization were compared.
Mutant mice with a hypersensitive serotonin (5-HT)3A receptor were generated through targeted exon replacement. A valine to serine mutation (V13'S) in the channel-lining M2 domain of the 5-HT3A receptor subunit rendered the 5-HT3 receptor 70-fold more sensitive to serotonin and produced constitutive activity when combined with the 5-HT3B subunit. Mice homozygous for the mutant allele (5-HT3Avs/vs) had decreased levels of 5-HT3A mRNA.
View Article and Find Full Text PDF