Publications by authors named "Quan Tran Minh"

Article Synopsis
  • The global immunization coverage has decreased during the COVID-19 pandemic, leading to under-immunized groups and impacting efforts to control vaccine-preventable diseases.
  • This study utilized modeling from 112 low- and middle-income countries to assess the effects of disrupted vaccine coverage on 14 diseases and identify regions needing recovery efforts.
  • Results were derived from historical vaccine coverage data and aimed to understand whether lost immunization advantages could be regained through targeted catch-up initiatives.
View Article and Find Full Text PDF

Background: Japanese Encephalitis (JE) is known for its high case fatality ratio (CFR) and long-term neurological sequelae. Over the years, efforts in JE treatment and control might change the JE fatality risk. However, previous estimates were from 10 years ago, using data from cases in the 10 years before this.

View Article and Find Full Text PDF

The relationship between age and seroprevalence can be used to estimate the annual attack rate of an infectious disease. For pathogens with multiple serologically distinct strains, there is a need to describe composite exposure to an antigenically variable group of pathogens. In this study, we assay 24,402 general-population serum samples, collected in Vietnam between 2009 to 2015, for antibodies to eleven human influenza A strains.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes the impact of vaccination against various diseases from 2000 to 2030 in 112 countries, showing that 97 million deaths could be averted due to vaccination efforts.
  • Researchers used 21 mathematical models to estimate disease burden and credited vaccine activities from 2000 to 2019 with preventing 50 million deaths, underscoring the importance of these interventions.
  • The findings highlight the critical need to maintain and enhance global vaccination efforts, especially for children under 5, in light of deficits caused by the COVID-19 pandemic.
View Article and Find Full Text PDF

Japanese encephalitis (JE) is a mosquito-borne disease, known for its high mortality and disability rate among symptomatic cases. Many effective vaccines are available for JE, and the use of a recently developed and inexpensive vaccine, SA 14-14-2, has been increasing over the recent years particularly with Gavi support. Estimates of the local burden and the past impact of vaccination are therefore increasingly needed, but difficult due to the limitations of JE surveillance.

View Article and Find Full Text PDF

In this paper, we propose a novel image reconstruction algorithm using multi-scale 3D convolutional sparse coding and a spectral decomposition technique for highly undersampled dynamic Magnetic Resonance Imaging (MRI) data. The proposed method recovers high-frequency information using a shared 3D convolution-based dictionary built progressively during the reconstruction process in an unsupervised manner, while low-frequency information is recovered using a total variation-based energy minimization method that leverages temporal coherence in dynamic MRI. Additionally, the proposed 3D dictionary is built across three different scales to more efficiently adapt to various feature sizes, and elastic net regularization is employed to promote a better approximation to the sparse input data.

View Article and Find Full Text PDF

Compressed sensing magnetic resonance imaging (CS-MRI) has provided theoretical foundations upon which the time-consuming MRI acquisition process can be accelerated. However, it primarily relies on iterative numerical solvers, which still hinders their adaptation in time-critical applications. In addition, recent advances in deep neural networks have shown their potential in computer vision and image processing, but their adaptation to MRI reconstruction is still in an early stage.

View Article and Find Full Text PDF

Background: Arbovirus infections are a serious concern in tropical countries due to their high levels of transmission and morbidity. With the outbreaks of chikungunya (CHIKV) in surrounding regions in recent years and the fact that the environment in Vietnam is suitable for the vectors of CHIKV, the possibility of transmission of CHIKV in Vietnam is of great interest. However, information about CHIKV activity in Vietnam remains limited.

View Article and Find Full Text PDF

In this paper, we propose a novel machine learning-based voxel classification method for highly-accurate volume rendering. Unlike conventional voxel classification methods that incorporate intensity-based features, the proposed method employs dictionary based features learned directly from the input data using hierarchical multi-scale 3D convolutional sparse coding, a novel extension of the state-of-the-art learning-based sparse feature representation method. The proposed approach automatically generates high-dimensional feature vectors in up to 75 dimensions, which are then fed into an intelligent system built on a random forest classifier for accurately classifying voxels from only a handful of selection scribbles made directly on the input data by the user.

View Article and Find Full Text PDF

Seroepidemiological studies aim to understand population-level exposure and immunity to infectious diseases. Their results are normally presented as binary outcomes describing the presence or absence of pathogen-specific antibody, despite the fact that many assays measure continuous quantities. A population's natural distribution of antibody titers to an endemic infectious disease may include information on multiple serological states - naiveté, recent infection, non-recent infection, childhood infection - depending on the disease in question and the acquisition and waning patterns of immunity.

View Article and Find Full Text PDF

High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits.

View Article and Find Full Text PDF

As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity.

View Article and Find Full Text PDF