The inherent limitations of traditional von Neumann architectures hinder the rapid development of internet of things technologies. Beyond conventional, complementary metal-oxide-semiconductor technologies, imaging sensors integrated with near- or in-sensor computing architectures emerge as a promising solution. In this study, the multi-scale van der Waals (vdWs) interactions in 1D tellurium (Te) atomic chains are explored, leading to the deposition of a photothermoelectric (PTE) Te nanomesh on a polymeric polyimide substrate.
View Article and Find Full Text PDFMpox, is a zoonotic disease caused by the monkeypox virus and is primarily endemic to Africa. As countries gradually stop smallpox vaccination, resistance to the smallpox virus is declining, increasing the risk of infection with mpox and other viruses. On 14 August 2024, the World Health Organization announced that the spread of mpox constituted a public health emergency of international concern.
View Article and Find Full Text PDFElectrochemically converting nitrate (NO ) to value-added ammonia (NH) is a complex process involving an eight-electron transfer and numerous intermediates, presenting a significant challenge for optimization. A multi-elemental synergy strategy to regulate the local electronic structure at the atomic level is proposed, creating a broad adsorption energy landscape in high-entropy alloy (HEA) catalysts. This approach enables optimal adsorption and desorption of various intermediates, effectively overcoming energy-scaling limitations for efficient NH electrosynthesis.
View Article and Find Full Text PDFThe movement of biological swarms is widespread in nature, and collective behavior enhances a swarm's adaptability to its environment. However, most research focuses on free swarm movement, overlooking the impact of environmental constraints such as tubes. This study examines the swimming behavior of Petitella georgiae through a tube.
View Article and Find Full Text PDFBrain-like intelligence is ushering humanity into an era of the Internet of Perceptions (IoP), where the vast amounts of data generated by numerous sensing nodes pose significant challenges to transmission bandwidth and computing hardware. A recently proposed near-sensor computing architecture offers an effective solution to reduce data processing delays and energy consumption. However, a pressing need remains for innovative hardware with multifunctional near-sensor image processing capabilities.
View Article and Find Full Text PDFContrastive learning (CL) is a form of self-supervised learning and has been widely used for various tasks. Different from widely studied instance-level contrastive learning, pixel-wise contrastive learning mainly helps with pixel-wise dense prediction tasks. The counterpart to an instance in instance-level CL is a pixel, along with its neighboring context, in pixel-wise CL.
View Article and Find Full Text PDFGlobal hydroclimatic variability is increasing with more frequent extreme dry and wet years, severely destabilizing terrestrial ecosystem productivity. However, what regulates the consequence of precipitation extremes on productivity remains unclear. Based on a 9-year field manipulation experiment on the Qinghai-Tibetan Plateau, we found that the responses of gross primary productivity (GPP) to extreme drought and wetness were differentially regulated by nitrogen (N) deposition.
View Article and Find Full Text PDFThe success of deep learning methodologies hinges upon the availability of meticulously labeled extensive datasets. However, when dealing with medical images, the annotation process for such abundant training data often necessitates the involvement of experienced radiologists, thereby consuming their limited time resources. In order to alleviate this burden, few-shot learning approaches have been developed, which manage to achieve competitive performance levels with only several labeled images.
View Article and Find Full Text PDFInorganic semiconductors typically have limited p-type behavior due to the scarcity of holes and the localized valence band maximum, hindering the progress of complementary devices and circuits. In this work, we propose an inorganic blending strategy to activate the hole-transporting character in an inorganic semiconductor compound, namely tellurium-selenium-oxygen (TeSeO). By rationally combining intrinsic p-type semimetal, semiconductor, and wide-bandgap semiconductor into a single compound, the TeSeO system displays tunable bandgaps ranging from 0.
View Article and Find Full Text PDFGrowing evidence indicates that plant community structure and traits have changed under climate warming, especially in cold or high-elevation regions. However, the impact of these warming-induced changes on ecosystem carbon sequestration remains unclear. Using a warming experiment on the high-elevation Qinghai-Tibetan Plateau, we found that warming not only increased plant species height but also altered species composition, collectively resulting in a taller plant community associated with increased net ecosystem productivity (NEP).
View Article and Find Full Text PDFSci Total Environ
June 2024
Corn is the third most cultivated food crop in the world, and climate change has important effects on corn production and food security. China is the top user of chemical fertilizer in the world, and analyzing how to effectively manage fertilizer application in such a developing country with resource constraints is crucial. We present empirical evidence from China to demonstrate the nonlinear impact of temperature on fertilizer usage in corn production based on a panel dataset that shows 2297 corn-growing counties during 1998-2016.
View Article and Find Full Text PDFHigh synthesis temperatures and specific growth substrates are typically required to obtain crystalline or oriented inorganic functional thin films, posing a significant challenge for their utilization in large-scale, low-cost (opto-)electronic applications on conventional flexible substrates. Here, we explore a pulse irradiation synthesis (PIS) to prepare thermoelectric metal chalcogenide (e.g.
View Article and Find Full Text PDFEnzyme-mimicking confined catalysis has attracted great interest in heterogeneous catalytic systems that can regulate the geometric or electronic structure of the active site and improve its performance. Herein, a liquid-assisted chemical vapor deposition (LCVD) strategy is proposed to simultaneously confine the single-atom Ru sites onto sidewalls and Janus Ni/NiO nanoparticles (NPs) at the apical nanocavities to thoroughly energize the N-doped carbon nanotube arrays (denoted as Ni/NiO@Ru-NC). The bifunctional Ni/NiO@Ru-NC electrocatalyst exhibits overpotentials of 88 and 261 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) at 100 mA cm in alkaline solution, respectively, all ranking the top tier among the carbon-supported metal-based electrocatalysts.
View Article and Find Full Text PDFPharmaceutical companies have recently focused on accelerating the timeline for initiating first-in-human (FIH) trials to allow quick assessment of biologic drugs. For example, a stable cell pool can be used to produce materials for the toxicology (Tox) study, reducing time to the clinic by 4-5 months. During the coronavirus disease 2019 (COVID-19) pandemic, the anti-COVID drugs timeline from DNA transfection to the clinical stage was decreased to 6 months using a stable pool to generate a clinical drug substrate (DS) with limited stability, virus clearance, and Tox study package.
View Article and Find Full Text PDFClimate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought.
View Article and Find Full Text PDFCrystalline/amorphous phase engineering is demonstrated as a powerful strategy for electrochemical performance optimization. However, it is still a considerable challenge to prepare transition metal-based crystalline/amorphous heterostructures because of the low redox potential of transition metal ions. Herein, a facile H -assisted method is developed to prepare ternary Ni P/MoNiP /MoP crystalline/amorphous heterostructure nanowires on the conductive substrate.
View Article and Find Full Text PDFBackground: Endometrial carcinoma is a common malignant tumor in female reproductive system. At present, there is no effective and economic prognostic index. This study aimed to investigate the effect of serum ferritin levels on the prognosis of endometrial carcinoma.
View Article and Find Full Text PDFTo evaluate the role of serum human epididymis secretory protein 4 (HE4) and carbohydrate antigen 125 (CA125) levels for predicting and monitoring the recurrence of endometrial endometrioid carcinoma (EEC) and assessing preoperative risk stratification in EEC patients. A total of 434 EEC patients were selected for this retrospective study between May 2011 and August 2018. Serum HE4 and CA125 levels were analyzed before the initial treatment, at the first postoperative follow-up, and at recurrence or the last follow-up.
View Article and Find Full Text PDFChemical bonds, including covalent and ionic bonds, endow semiconductors with stable electronic configurations but also impose constraints on their synthesis and lattice-mismatched heteroepitaxy. Here, the unique multi-scale van der Waals (vdWs) interactions are explored in one-dimensional tellurium (Te) systems to overcome these restrictions, enabled by the vdWs bonds between Te atomic chains and the spontaneous misfit relaxation at quasi-vdWs interfaces. Wafer-scale Te vdWs nanomeshes composed of self-welding Te nanowires are laterally vapor grown on arbitrary surfaces at a low temperature of 100 °C, bringing greater integration freedoms for enhanced device functionality and broad applicability.
View Article and Find Full Text PDFAtomically 2D layered ferroelectric semiconductors, in which the polarization switching process occurs within the channel material itself, offer a new material platform that can drive electronic components toward structural simplification and high-density integration. Here, a room-temperature 2D layered ferroelectric semiconductor, bismuth oxychalcogenides (Bi O Se), is investigated with a thickness down to 7.3 nm (≈12 layers) and piezoelectric coefficient (d ) of 4.
View Article and Find Full Text PDF