In this study, a composite material was synthesized through the co-pyrolysis of biochar doped with synthetic mordenite. The adsorption experiments conducted with BC@ASM on As(III) facilitated the determination of the optimal mass ratio of 20:1 (ASM: Yak dung) and a pyrolysis temperature of 500 °C. The adsorption properties of ASM and BC@ASM were examined through batch adsorption experiments and a range of characterization techniques.
View Article and Find Full Text PDFTranscriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-variants to enhance model building for TF downstream target genes.
View Article and Find Full Text PDFHerein, an N-coordinated Fe site dispersed in porous carbon frameworks (Fe-NC) fabricated from zeolitic imidazolate frameworks encapsulated with iron acetylacetonate (Fe(acac) @ZIFs) was employed to activate peroxymonosulfate (PMS) for the attenuation of sulfisoxazole (SIZ) and treating real hospital wastewater. The constructed Fe-NC/PMS system exhibited good catalytic stability for SIZ degradation, maintaining excellent degradation performance over multiple cycles with virtually no leaching. The quenching experiments, electron paramagnetic resonance (EPR) capture analyses, and semi-quantitative measurements showed that singlet oxygen (O) and high-valent metal-oxo species were mainly responsible for SIZ degradation by Fe-NC/PMS.
View Article and Find Full Text PDFModern sequencing instruments bring unprecedented opportunity to study within-host viral evolution in conjunction with viral transmissions between hosts. However, no computational simulators are available to assist the characterization of within-host dynamics. This limits our ability to interpret epidemiological predictions incorporating within-host evolution and to validate computational inference tools.
View Article and Find Full Text PDFIdentifying risk protein targets and their therapeutic drugs is crucial for effective cancer prevention. Here, we conduct integrative and fine-mapping analyses of large genome-wide association studies data for breast, colorectal, lung, ovarian, pancreatic, and prostate cancers, and characterize 710 lead variants independently associated with cancer risk. Through mapping protein quantitative trait loci (pQTL) for these variants using plasma proteomics data from over 75,000 participants, we identify 365 proteins associated with cancer risk.
View Article and Find Full Text PDFBrain pericytes are one of the critical cell types that regulate endothelial barrier function and activity, thus ensuring adequate blood flow to the brain. The genetic pathways guiding undifferentiated cells into mature pericytes are not well understood. We show here that pericyte precursor populations from both neural crest and head mesoderm of zebrafish express the transcription factor nkx3.
View Article and Find Full Text PDFA novel lignocellulosic aerogel, MT-LCA, was successfully prepared from MT by undergoing partial dissolution in an ionic liquid, coagulation in water, freezing in liquid nitrogen, and subsequent freeze-drying. The MT-LCA preserves its original honeycomb-like porous structure, and the newly formed micropores contribute to increased porosity and specific surface area. FT-IR analysis reveals that MT, after dissolution and coagulation, experiences no chemical reactions.
View Article and Find Full Text PDFDetecting genetic variants with low-effect sizes using a moderate sample size is difficult, hindering downstream efforts to learn pathology and estimating heritability. In this work, by utilizing informative weights learned from training genetically predicted gene expression models, we formed an alternative approach to estimate the polygenic term in a linear mixed model. Our linear mixed model estimates the genetic background by incorporating their relevance to gene expression.
View Article and Find Full Text PDFDue to the rapid development of human beings, heavy metals are occurred in the Yunnan-Guizhou Plateau and Panxi Plateau, the special dry and hot climate areas. Pb and Cu can be quickly transferred through water-plant-animal, further harm to human health by food chain. Therefore, the study of heavy metal treatment is imminent.
View Article and Find Full Text PDFBrain imaging and genomics are critical tools enabling characterization of the genetic basis of brain disorders. However, imaging large cohorts is expensive and may be unavailable for legacy datasets used for genome-wide association studies (GWASs). Using an integrated feature selection/aggregation model, we developed an image-mediated association study (IMAS), which utilizes borrowed imaging/genomics data to conduct association mapping in legacy GWAS cohorts.
View Article and Find Full Text PDFTranscriptome-wide association studies (TWAS) have been successful in identifying disease susceptibility genes by integrating cis-variants predicted gene expression with genome-wide association studies (GWAS) data. However, trans-located variants for predicting gene expression remain largely unexplored. Here, we introduce transTF-TWAS, which incorporates transcription factor (TF)-linked trans-located variants to enhance model building.
View Article and Find Full Text PDFFused deposition modeling (FDM) processed Poly-ether-ether-ketone (PEEK) materials are widely used in aerospace, automobile, biomedical, and electronics industries and other industries due to their excellent mechanical properties, thermal properties, chemical resistance, wear resistance, and biocompatibility, etc. However, the manufacture of PEEK materials and parts utilizing the FDM process faces the challenge of fine-tuning a list of process parameters and heat treatment conditions to reach the best-suiting mechanical properties and microstructures. It is non-trivial to make the selection only according to theoretical analysis while counting on a vast number of experiments is the general situation.
View Article and Find Full Text PDFGenetic interactions play critical roles in genotype-phenotype associations. We developed a novel interaction-integrated linear mixed model (ILMM) that integrates a priori knowledge into linear mixed models. ILMM enables statistical integration of genetic interactions upfront and overcomes the problems of searching for combinations.
View Article and Find Full Text PDFTranscriptome-wide association studies (TWAS) have successfully discovered many putative disease susceptibility genes. However, TWAS may suffer from inaccuracy of gene expression predictions due to inclusion of non-regulatory variants. By integrating prior knowledge of susceptible transcription factor occupied elements, we develop sTF-TWAS and demonstrate that it outperforms existing TWAS approaches in both simulation and real data analyses.
View Article and Find Full Text PDFBiomolecules and organelles usually undergo changes to their structure or form as a result of mechanical stretching or stimulation. It is critical to be able to observe these changes and responses, which trigger mechano-chemical coupling or signal transduction. Advanced techniques have been developed to observe structure and form during manipulation; however, these require sophisticated methods.
View Article and Find Full Text PDFPolycarbosilanes have been considered as potential materials used in electronic packaging and circuit boards owing to their excellent low-dielectric performance. In this work, we prepared new hyperbranched carbosilane oligomers (HCBOs) which were functionalized by benzocyclobutene (BCB) groups. HCBOs can be thermally cured to produce transparent (HCBRs) with low dielectric constant and high thermostability.
View Article and Find Full Text PDFThe COVID-19 pandemic has illustrated the importance of infection tracking. The role of asymptomatic, undiagnosed individuals in driving infections within this pandemic has become increasingly evident. Modern phylogenetic tools that take into account asymptomatic or undiagnosed individuals can help guide public health responses.
View Article and Find Full Text PDFThe success of transcriptome-wide association studies (TWAS) has led to substantial research toward improving the predictive accuracy of its core component of genetically regulated expression (GReX). GReX links expression information with genotype and phenotype by playing two roles simultaneously: it acts as both the outcome of the genotype-based predictive models (for predicting expressions) and the linear combination of genotypes (as the predicted expressions) for association tests. From the perspective of machine learning (considering SNPs as features), these are actually two separable steps-feature selection and feature aggregation-which can be independently conducted.
View Article and Find Full Text PDFIdentifying transcription factors (TFs) whose DNA bindings are altered by genetic variants that regulate susceptibility genes is imperative to understand transcriptional dysregulation in disease etiology. Here, we develop a statistical framework to analyze extensive ChIP-seq and GWAS data and identify 22 breast cancer risk-associated TFs. We find that, by analyzing genetic variations of TF-DNA bindings, the interaction of FOXA1 with co-factors such as ESR1 and E2F1, and the interaction of TFs with chromatin features (i.
View Article and Find Full Text PDFThe development of the cerebral cortex requires balanced expansion and differentiation of neural stem/progenitor cells (NPCs), which rely on precise regulation of gene expression. Because NPCs often exhibit transcriptional priming of cell-fate-determination genes, the ultimate output of these genes for fate decisions must be carefully controlled in a timely fashion at the post-transcriptional level, but how that is achieved is poorly understood. Here, we report that de novo missense variants in an RNA-binding protein CELF2 cause human cortical malformations and perturb NPC fate decisions in mice by disrupting CELF2 nucleocytoplasmic transport.
View Article and Find Full Text PDFBack-stepping design method is widely used in high-performance tracking control tasks As is known to all, the controller based on back-stepping design will become complex as the model order increases, which is the so called "explosion of terms" problem. In this paper, a tracking differentiator (TD) based back-stepping controller is proposed to handle the "explosion of terms" problem. Instead of calculating the derivatives of intermediate control variables through tedious analytical expressions, for the proposed method, the tracking differentiator is embedded into each recursive procedure to generate the substitute derivative signal for every intermediate control variable.
View Article and Find Full Text PDFThe transcriptome-wide association study (TWAS) has emerged as one of several promising techniques for integrating multi-scale 'omics' data into traditional genome-wide association studies (GWAS). Unlike GWAS, which associates phenotypic variance directly with genetic variants, TWAS uses a reference dataset to train a predictive model for gene expressions, which allows it to associate phenotype with variants through the mediating effect of expressions. Although effective, this core innovation of TWAS is poorly understood, since the predictive accuracy of the genotype-expression model is generally low and further bounded by expression heritability.
View Article and Find Full Text PDFDNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or "haplotypes." However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly.
View Article and Find Full Text PDF