We provide promising computational (in silico) data on phytochemicals (compounds -) from Arabian Peninsula medicinal plants as strong binders, targeting 3-chymotrypsin-like protease (3CL) and papain-like proteases (PL) of SARS-CoV-2. Compounds - followed the Lipinski rules of five (RO5) and ADMET analysis, exhibiting drug-like characters. Non-covalent (reversible) docking of compounds - demonstrated their binding with the catalytic dyad (CYS145 and HIS41) of 3CL and catalytic triad (CYS111, HIS272, and ASP286) of PL.
View Article and Find Full Text PDFCOVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds -) that were previously isolated and purified by our research team from Saudi medicinal plants.
View Article and Find Full Text PDFBackground: Nanotechnology and material science have developed enormously fast in recent years. Due to their excellent magnetic properties, iron oxide nanoparticles (IONPs) have been broadly applied in the field of bioengineering and biomedical. Thus, it is important to evaluate the safety issues and health effects of these nanomaterials.
View Article and Find Full Text PDFWe investigated the anticancer mechanism of a chloroform extract of marine sponge () (sample C) in human breast adenocarcinoma (MCF-7) cells. Viability analysis using MTT and neutral red uptake (NRU) assays showed that sample C exposure decreased the proliferation of cells. Flow cytometric data exhibited reactive oxygen species (ROS), nitric oxide (NO), dysfunction of mitochondrial potential, and apoptosis in sample C-treated MCF-7 cells.
View Article and Find Full Text PDFPlastic is a pervasive material that has become an indispensable part of our daily lives and is used in various commercial products. However, plastic waste has significantly impacted the environment, accumulating in water and land ecosystems and harming all forms of life. When plastic degrades, it breaks down into smaller particles called microplastics (MPs), which can further breakdown into nanoplastics (NPs).
View Article and Find Full Text PDFRecent studies in nanomedicine have intensively explored the prospective applications of surface-tailored graphene oxide (GO) as anticancer entity. However, the efficacy of nonfunctionalized graphene oxide nanolayers (GRO-NLs) as an anticancer agent is less explored. In this study, we report the synthesis of GRO-NLs and their in vitro anticancer potential in breast (MCF-7), colon (HT-29), and cervical (HeLa) cancer cells.
View Article and Find Full Text PDFBackground: Serotype coxsackievirus B (CVB) infection has been linked to viral myocarditis, dilated cardiomyopathy, meningitis, and pancreatitis in children and young adults. As of yet, no antiviral drug has been authorized for the treatment of coxsackievirus infection. Therefore, there is perpetual demand for new therapeutic agents and the improvement of existing ones.
View Article and Find Full Text PDFNano-based products have become an apparent and effective option to treat liver cancer, which is a deadly disease, and minimize or eradicate these problems. The Core-shell ZnO microspheres composed of nanoclusters (ZnOMS-NCs) have shown that it is very worthwhile to administer the proliferation rate in HepG2 and MCF-7 cancer cells even at a very low concentration (5 μg/mL). ZnOMS-NCs were prepared through hydrothermal solution process and well characterized.
View Article and Find Full Text PDFJ Trace Elem Med Biol
September 2022
Neodymium oxide exhibits a unique property, which facilitates and largely utilized as an industrial applications. A number of cytotoxic study is available but very limited information is available to understand their biological activity with neodymium oxide at a very low conc- entration of the material. The present work was designed to understand the cytotoxicity against liver (HepG-2) and lung (A-549) cancer cells.
View Article and Find Full Text PDFTris (2-ethylhexyl) phosphate (TEHP) is an organophosphate flame retardant (OPFRs) which is extensively used as a plasticizer and has been detected in human body fluids. Contemporarily, toxicological studies on TEHP in human cells are very limited and there are few studies on its genotoxicity and cell death mechanism in human liver cells (HepG2). Herein, we find that HepG2 cells exposed to TEHP (100, 200, 400 µM) for 72 h reduced cell survival to 19.
View Article and Find Full Text PDFRecent reports have confirmed that tris(2-butoxyethyl) phosphate (TBEP), an organophosphorous flame retardants (OPFRs), profoundly detected in the dust from solid waste (SW), e-waste dumping sites, landfills, and wastewater treatment facilities. Herein, we evaluated the hepatotoxic and carcinogenic potential of TBEP in human liver cells (HepG2). HepG2 cells exhibited cytotoxicity after 3 days of exposure, especially at greater concentrations (100-400 μM).
View Article and Find Full Text PDFTris(1,3-Dichloro-2-propyl)phosphate (TDCPP) is an organophosphorus flame retardant (OPFR) widely used in a variety of consumer products (plastics, furniture, paints, foams, and electronics). Scientific evidence has affirmed the toxicological effects of TDCPP in in vitro and in vivo test models; however, its genotoxicity and carcinogenic effects in human cells are still obscure. Herein, we present genotoxic and carcinogenic properties of TDCPP in human liver cells (HepG2).
View Article and Find Full Text PDFThe application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs.
View Article and Find Full Text PDFHuman ACE2 and the serine protease TMPRSS2 of novel SARS-CoV-2 are primary entry receptors in host cells. Expression of these genes at the transcriptional level has not been much discussed in detail. The ISRE elements of the ACE2 promoter are a binding site for the ISGF3 complex of the JAK/STAT signaling pathway.
View Article and Find Full Text PDFIn this manuscript, the grown and annealed strontium-doped nickel oxide nanoparticles (SrNiONPs) were synthesized using a precipitation method with nickel nitrate and strontium nitrate as precursor agents with trisodium citrate. Various characterization techniques, including X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), UV-visible, and zeta sizer, were used to thoroughly examine the samples. The XRD pattern (21 nm) was used to calculate the size, phases, and crystallinity of the material (SrNiONPs).
View Article and Find Full Text PDFTris(1-chloro-2-propyl)phosphate (TCPP) is a chlorinated organophosphorus flame retardant (OPFR) widely used in consumer goods after the phaseout of brominated flame retardants (BFRs). TCPP can percolate into the indoor and outdoor dusts, leading to its detection in the human body fluids (urine, breast milk) and placenta. However, TCPP has not been studied so far for its toxicity in the human vascular system.
View Article and Find Full Text PDFCarbofuran is a broad-spectrum carbamate insecticide, which principally inhibits the acetylcholinesterase (AChE) enzyme in the nervous system. Nonetheless, their selective action is not restricted to a single species and expanded to humans. No studies are available on the toxicological effects of carbofuran in the endothelial cells (ECs), which first confronts the toxicants in blood vessels.
View Article and Find Full Text PDFMill (Damask rose), belonging to the Rosaceae family, is known for medicinal purposes in traditional medicine system. However, its anticancer activity has not been studied yet in detail. Herein, we aimed to investigate the cytotoxic effects of hexane (RA-HE) and methanolic (RA-ME) extracts against human breast (MCF-7), lung epithelial (A-549), and cervical (HeLa) cancer cells.
View Article and Find Full Text PDFPesticides have adverse effects on the cellular functionality, which may trigger myriad of health consequences. However, pesticides-mediated toxicity in the endothelial cells (ECs) is still elusive. Hence, in this study, we have used human umbilical vein endothelial cells (HUVECs) as a model to quantify the cytotoxicity and genotoxicity of four pesticides (methomyl, carbaryl, metalaxyl, and pendimethalin).
View Article and Find Full Text PDFOxidative stress is known to induce cytotoxicity and apoptosis in endothelial cells and indorse development of atherosclerosis. The aim of this research was to assess the cytoprotective effects of ethanolic extract of Nigella sativa (NSE) against H O -induced cell death in human umbilical vein endothelial cells (HUVECs) and also study the probable mechanisms through which NSE exhibited cyto-protection. The cytotoxicity was measured by exposing the HUVECs with NSE (10-200 μg/ml) and H O (25-1000 μM) for 24 h.
View Article and Find Full Text PDFTris(2-chloroethyl) phosphate (TCEP) is one of the organophosphorus flame retardants (OPFRs) used in consumer commodities and have been detected in human body fluids. Research on TCEP-induced transcriptomic alterations and toxicological consequences in liver cells is still lacking. Herein, human hepatocellular (HepG2) cells were treated with 100, 200, and 400 μM TCEP for 3 days to quantify hepatotoxicity by MTT, NRU, and comet assays.
View Article and Find Full Text PDFNickel oxide nanoparticles (NiO-NPs) are an important group of nanoparticles with increasing applications in many aspects of industry. At present, there is evidence demonstrating the cytotoxic characteristics of NiO-NPs, while the involvement of autophagy in the cytotoxicity of NiO-NPs has not been reported. In this study, we aimed to study the role of autophagy in the cytotoxicity of NiO-NPs and the underlying regulatory mechanisms.
View Article and Find Full Text PDFIn recent years, the industrial use of ZnO quantum dots (QDs) and nanoparticles (NPs) has risen and there is a high chance of these nanoparticles affecting human health. In this study, different sizes of ZnO-NPs (6-100 nm) were prepared and characterized. The generation of reactive oxygen species (ROS) and its involvement in apoptosis when HepG2 cells were exposed to QDs (6 nm) and NPs of different sizes (15-20, 50, and 100 nm) was also investigated.
View Article and Find Full Text PDFChemically synthesized copper oxide nanoparticles (CuONPs) involve the generation of toxic products, which narrowed its biological application. Hence, we have developed a one-pot, green method for CuONP production employing the leaf extract of (CLE). Gas chromatography-mass spectrometry (GC-MS) analysis confirmed the capping of CuONPs by CLE esters (CLE-CuONPs).
View Article and Find Full Text PDF