Publications by authors named "Quach M"

In this study, we developed and validated an online analysis framework in MATLAB Simulink for recording and analysis of intracranial electroencephalography (iEEG). This framework aims to detect interictal spikes in patients with epilepsy as the data is being recorded. An online spike detection was performed over 10-minute interictal iEEG data recorded with Brain Interchange CorTec in three human subjects.

View Article and Find Full Text PDF

The wireless transmission of neural data may pose the risk of packet loss (PL), potentially compromising signal quality or, in extreme cases, causing complete data loss. Addressing lost packets is essential to ensure data integrity and preserve vital neural patterns. This study investigates the effect of PL interference on epilepsy neuro biomarkers, focusing specifically on interictal epileptiform spikes and high frequency oscillations (HFOs), and the performance of the low computational cost interpolation methods.

View Article and Find Full Text PDF

Background: While high-frequency oscillations (HFOs) and their stereotyped clusters (sHFOs) have emerged as potential neuro-biomarkers for the rapid localization of the seizure onset zone (SOZ) in epilepsy, their clinical application is hindered by the challenge of automated elimination of pseudo-HFOs originating from artifacts in heavily corrupted intraoperative neural recordings. This limitation has led to a reliance on semi-automated detectors, coupled with manual visual artifact rejection, impeding the translation of findings into clinical practice.

Methods: In response, we have developed a computational framework that integrates sparse signal processing and ensemble learning to automatically detect genuine HFOs of intracranial EEG data.

View Article and Find Full Text PDF

Microfluidics offer user-friendly liquid handling for a range of biochemical applications. 3D printing microfluidics is rapid and cost-effective compared to conventional cleanroom fabrication. Typically, microfluidics are 3D printed using digital light projection (DLP) stereolithography (SLA), but many models in use are expensive (≥$10,000 USD), limiting widespread use.

View Article and Find Full Text PDF

Anti-programmed cell death protein 1 (PD-1) therapy is considered effective in the treatment of metastatic or locally advanced cutaneous squamous cell carcinoma but the use of these agents in solid organ transplant recipients (SOTRs) is often taken with caution. While anti-tumor effects without graft rejection have been reported, studies have shown high rates of fatal graft rejection with immune checkpoint therapy. In this case report, we present an SOTR patient with life-threatening, acute hypoxic respiratory failure due to rapidly progressive metastatic cutaneous squamous cell carcinoma with lung and pleural involvement.

View Article and Find Full Text PDF

Integrating datasets from multiple sites and scanners can increase statistical power for neuroimaging studies but can also introduce significant inter-site confounds. We evaluated the effectiveness of ComBat, an empirical Bayes approach, to combine longitudinal preclinical MRI data acquired at 4.7 or 9.

View Article and Find Full Text PDF

Neuromodulation through implantable pulse generators (IPGs) represents an important treatment approach for neurological disorders. While the field has observed the success of state-of-the-art interventions, such as deep brain stimulation (DBS) or responsive neurostimulation (RNS), implantable systems face various technical challenges, including the restriction of recording from a limited number of brain sites, power management, and limited external access to the assessed neural data in a continuous fashion. To the best of our knowledge, for the first time in this study, we investigated the feasibility of recording human intracranial EEG (iEEG) using a benchtop version of the Brain Interchange (BIC) unit of CorTec, which is a portable, wireless, and externally powered implant with sensing and stimulation capabilities.

View Article and Find Full Text PDF

Stuttering is a common speech disorder that interrupts speech fluency and tends to cluster in families. Typically, stuttering is characterized by speech sounds, words or syllables which may be repeated or prolonged and speech that may be further interrupted by hesitations or 'blocks'. Rare variants in a small number of genes encoding lysosomal pathway proteins have been linked to stuttering.

View Article and Find Full Text PDF

Introduction: In carefully selected patients with medically refractory epilepsy, disconnective hemispherotomy can result in significant seizure freedom; however, incomplete disconnection can result in ongoing seizures and poses a significant challenge. Completion hemispherotomy provides an opportunity to finish the disconnection. We describe the use of magnetic resonance-guided laser interstitial thermal ablation (MRgLITT) for completion hemispherotomy.

View Article and Find Full Text PDF

Background: Surgery has become integral in treating children with tuberous sclerosis complex (TSC)-related drug-resistant epilepsy (DRE).

Objective: To describe outcomes of a multimodal diagnostic and therapeutic approach comprising invasive intracranial monitoring and surgical treatment and compare the complementary techniques of open resection and magnetic resonance-guided laser interstitial thermal therapy.

Methods: Clinical and radiographic data were prospectively collected for pediatric patients undergoing surgical evaluation for TSC-related DRE at our tertiary academic hospital.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and the second most common cause after Down syndrome. FXS is an X-linked disorder due to a full mutation of the CGG triplet repeat of the FMR1 gene which codes for a protein that is crucial in synaptogenesis and maintaining functions of extracellular matrix-related proteins, key for the development of normal neuronal and connective tissue including collagen. In addition to neuropsychiatric and behavioral problems, individuals with FXS show physical features suggestive of a connective tissue disorder including loose skin and joint laxity, flat feet, hernias and mitral valve prolapse.

View Article and Find Full Text PDF

High-frequency oscillations (HFOs) are considered a biomarker of the epileptogenic zone in intracranial EEG recordings. However, automated HFO detectors confound true oscillations with spurious events caused by the presence of artifacts.We hypothesized that, unlike pseudo-HFOs with sharp transients or arbitrary shapes, real HFOs have a signal characteristic that can be represented using a small number of oscillatory bases.

View Article and Find Full Text PDF

Many cellular processes, including cell division, development, and cell migration require spatially and temporally coordinated forces transduced by cell-surface receptors. Nucleic acid-based molecular tension probes allow one to visualize the piconewton (pN) forces applied by these receptors. Building on this technology, we recently developed molecular force microscopy (MFM) which uses fluorescence polarization to map receptor force orientation with diffraction-limited resolution (~250 nm).

View Article and Find Full Text PDF
Article Synopsis
  • Accurate profiling of recessive diseases in the Vietnamese population is crucial for developing effective carrier screening programs, but minorities are often underrepresented in genetic research.
  • A comprehensive study analyzed genetic data from 985 Vietnamese individuals, identifying 118 recessive diseases and 164 variants, with some diseases having significantly higher carrier frequencies compared to global populations.
  • The research revealed three prevalent diseases—beta-thalassemia, citrin deficiency, and phenylketonuria—with notable carrier rates, and introduced seven novel pathogenic variants, enhancing the understanding of recessive disorders specific to Vietnamese individuals.
View Article and Find Full Text PDF

Platelet adhesion to the site of vascular damage is a critical early step in hemostasis. The platelet glycoprotein (GP) Ib-IX-V plays a key role in this step via its interaction with immobilized von Willebrand Factor (VWF). In addition to its well-known role in adhesion, GPIb-IX-V is critical for platelets' survival in circulation and plays an important role in the regulation of platelet clearance.

View Article and Find Full Text PDF

Background: Platelets' initial recognition of endothelial damage proceeds through the interaction between collagen, plasma von Willebrand factor (VWF), and the platelet glycoprotein (GP)Ib-IX complex (CD42). The GPIb-IX complex consists of one GPIbα, one GPIX, and two GPIbβ subunits. Once platelets are immobilized to the subendothelial matrix, shear generated by blood flow unfolds a membrane-proximal mechanosensory domain (MSD) in GPIbα, exposing a conserved trigger sequence and activating the receptor.

View Article and Find Full Text PDF

Despite the vital role of mechanical forces in biology, it still remains a challenge to image cellular force with sub-100-nm resolution. Here, we present tension points accumulation for imaging in nanoscale topography (tPAINT), integrating molecular tension probes with the DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) technique to map piconewton mechanical events with ~25-nm resolution. To perform live-cell dynamic tension imaging, we engineered reversible probes with a cryptic docking site revealed only when the probe experiences forces exceeding a defined mechanical threshold (~7-21 pN).

View Article and Find Full Text PDF

The glycoprotein (GP)Ib-IX receptor complex plays a critical role in platelet physiology and pathology. Its interaction with von Willebrand factor (VWF) on the subendothelial matrix instigates platelet arrest at the site of vascular injury and is vital to primary hemostasis. Its reception to other ligands and counter-receptors in the bloodstream also contribute to various processes of platelet biology that are still being discovered.

View Article and Find Full Text PDF

Differences in pancreatic islet susceptibility during type 1 diabetes development may be explained by interislet variations. This study aimed to investigate if heterogeneities in vascular support and metabolic activity in rat and human islets may explain why some islets are attacked earlier than other islets. In rats, highly blood perfused islets were identified by injection of microspheres into the ascending aorta, whereas a combination of anterograde and retrograde injections of microspheres into pancreas was used to determine the islet vascular drainage system.

View Article and Find Full Text PDF

Purpose: The clinical significance of magnetoencephalography (MEG) dipole clusters in the insular region in patients with focal epilepsy, when present in conjunction with MEG dipole clusters in other regions of the brain is not known.

Methods: All patients (adult and pediatric) with MEG dipole clusters involving the insula were retrospectively evaluated. Patients who underwent any form of surgical intervention were included in the study.

View Article and Find Full Text PDF

Background: Epilepsy is a neurological disorder characterized by unpredictable seizures that can lead to severe health problems. EEG techniques have shown to be advantageous for studying and predicting epileptic seizures, thanks to their cost-effectiveness, non-invasiveness, portability and the capability for long-term monitoring. Linear and non-linear EEG analysis methods have been developed for the effective prediction of seizure onset, however both methods remain blind to underlying alterations of the structural and functional brain networks associated with epileptic seizures.

View Article and Find Full Text PDF

Background: The SYNGAP1 gene encodes for a small GTPase-regulating protein critical to dendritic spine maturation and synaptic plasticity. Mutations have recently been identified to cause a breadth of neurodevelopmental disorders including autism, intellectual disability, and epilepsy. The purpose of this work is to define the phenotypic spectrum of SYNGAP1 gene mutations and identify potential biomarkers of clinical severity and developmental progression.

View Article and Find Full Text PDF

Beta cell replacement is an exciting field where new beta cell sources and alternative sites are widely explored. The liver has been the implantation site of choice in the clinic since the advent of islet transplantation. However, in most cases, repeated islet transplantation is needed to achieve normoglycemia in diabetic recipients.

View Article and Find Full Text PDF