Co-contaminants and complex subsurface conditions pose great challenges to site remediation. This study demonstrates the potential of electrokinetic bioremediation (EK-BIO) in treating co-contaminants of chlorinated solvents and heavy metals in low-permeability soils with elevated sulfate. EK-BIO columns were filled with field soils, and were fed by the electrolyte containing 20 mg/L trichloroethylene (TCE), 250 μM Cr(VI), 25 μM As(III), 10 mM lactate, and 10 mM sulfate.
View Article and Find Full Text PDFElectrokinetic-enhanced bioremediation (EK-Bio), particularly bioaugmentation with injection of biodehalogenation functional microbes such as , has been documented to be effective in treating a low-permeability subsurface matrix contaminated with chlorinated ethenes. However, the spatio-temporal variations of indigenous microbial community and biodehalogenation activity of the background matrix, a fundamental aspect for understanding EK-Bio, remain unclear. To fill this gap, we investigated the variation of trichloroethylene (TCE) biodehalogenation activity in response to indigenous microbial community succession in EK-Bio by both column and batch experiments.
View Article and Find Full Text PDFChlorinated solvents are widespread subsurface contaminants that are often present as complex mixtures. Complete biodegradation of mixed chlorinated solvents remains challenging because the optimal redox conditions for biodegradation of different chlorinated solvents differ significantly. In this study, anaerobic and aerobic conditions were integrated by electrolysis coupled with groundwater circulation for biodegradation of a mixture of chloroform (CF, 8.
View Article and Find Full Text PDFEnviron Sci Technol
December 2019
Fe(II)-bearing clay minerals are important electron sources for Cr(VI) reduction in subsurface environments. However, it is not clear how iron (oxyhydr)oxides impact Cr(VI) reduction by Fe(II)-bearing clays as the two minerals can coexist in soil and sediment aggregates. This study investigated Cr(VI) reduction in the mixed suspensions of reduced nontronite NAu-2 (rNAu-2) and ferrihydrite (Fe(II)/Cr(VI) = 3:1).
View Article and Find Full Text PDFRecent studies have suggested oxytocin as a possible drug to treat social deficits caused by autism spectrum disorder (ASD), but the safety of intranasal oxytocin in autistic patients has not been established. The aim of this review was to characterize the side-effect profile of long-term intranasal oxytocin in treatment of ASD compared to placebo. All randomized controlled trials of intranasal oxytocin in the treatment of ASD published before 1 January 2017 that reported safety data were identified from databases, including PubMed, Embase, Cochrane Library, and International Pharmaceutical Abstract.
View Article and Find Full Text PDF