Publications by authors named "Qizhen Qin"

The electrocatalytic oxidation of benzyl alcohol to benzoic acid is a process that often requires high voltage, leading to increased energy consumption, side reactions (oxygen evolution reaction (OER)), and catalyst degradation. Herein, our study introduces a novel approach. We demonstrate that a PtZn-ZnO catalyst featuring a PtZn intermetallic structure with abundant PtZn-ZnO interfaces on the surface allows for the electrocatalytic oxidation of benzyl alcohol to benzoic acid with an impressive selectivity of 99.

View Article and Find Full Text PDF

Direct oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), crucial for medical supply production, is hindered by overoxidation. We synthesized gold nanomaterials with distinct single-crystal facets, {111} in octahedra (OC), {100} in nanocubes (NCs), and {110} in rhombic dodecahedra (RD), to investigate the facet-dependent HMF oxidation. The Au RD achieved the spontaneous oxidation of HMF to HMFCA with stoichiometric hydrogen production, maintaining 95% carbon balance, 91% yield, and 98% selectivity.

View Article and Find Full Text PDF
Article Synopsis
  • Challenges in efficiently converting biomass-based aldehydes and alcohols to acids limit their broader application; this study presents a solution with a new catalyst.
  • The Pd/Ni(OH) catalyst achieves nearly 100% selectivity in producing 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural, yielding 97.3% at a voltage of 0.6 V under standard conditions.
  • The catalyst's effectiveness is enhanced by its unique Ni-O-Pd interfaces, which promote reaction steps, prevent nanoparticle clumping, and maintain stability over 200 hours of continuous use.
View Article and Find Full Text PDF

The development of single-atom catalysts with effective interfaces for biomass conversion is a promising but challenging research area. In this study, a Ru/CoO catalyst was successfully fabricated with the impregnation method, which featured Ru single atoms on a cobalt oxide substrate. The Ru/CoO catalyst showed superior performance in the selective electrooxidation of 5-hydroxymethylfurfural (HMF) to produce 2,5-furandicarboxylic acid (FDCA), a high value-added product.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3hggj7u4rfndkopjgig7esbel29vag56): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once