The potential for rotor component shedding in rotating machinery poses significant risks, necessitating the development of an early and precise fault diagnosis technique to prevent catastrophic failures and reduce maintenance costs. This study introduces a data-driven approach to detect rotor component shedding at its inception, thereby enhancing operational safety and minimizing downtime. Utilizing frequency analysis, this research identifies harmonic amplitudes within rotor vibration data as key indicators of impending faults.
View Article and Find Full Text PDFSurface roughness prediction is a pivotal aspect of the manufacturing industry, as it directly influences product quality and process optimization. This study introduces a predictive model for surface roughness in the turning of complex-structured workpieces utilizing Gaussian Process Regression (GPR) informed by vibration signals. The model captures parameters from both the time and frequency domains of the turning tool, encompassing the mean, median, standard deviation (STD), and root mean square (RMS) values.
View Article and Find Full Text PDFThe state of charge (SOC) for a lithium-ion battery is a key index closely related to battery performance and safety with respect to the power supply system of electric vehicles. The Kalman filter (KF) or extended KF (EKF) is normally employed to estimate SOC in association with the relatively simple and fast second-order resistor-capacitor (RC) equivalent circuit model for SOC estimations. To improve the stability of SOC estimation, a two-stage method is developed by combining the second-order RC equivalent circuit model and the eXogenous Kalman filter (XKF) to estimate the SOC of a lithium-ion battery.
View Article and Find Full Text PDF