Publications by authors named "Qiyuan Chang"

Correlative light and electron microscopy (CLEM) is a comprehensive microscopy that combines the localization information provided by fluorescence microscopy (FM) and the context of cellular ultrastructure acquired by electron microscopy (EM). CLEM is a trade-off between fluorescence and ultrastructure, and usually, ultrastructure compromises fluorescence. Compared with other hydrophilic embedding resins, such as glycidyl methacrylate, HM20, or K4M, Epon is superior in ultrastructure preservation and sectioning properties.

View Article and Find Full Text PDF

Objective: To compare live-birth rates between letrozole application and artificial cycle for endometrium preparation during frozen embryo transfer (FET) cycle among women with polycystic ovarian syndrome (PCOS).

Methods: A randomized controlled trial was conducted. Women with PCOS were randomized to letrozole application for ovulation induction compared with artificial cycle for endometrial preparation during FET.

View Article and Find Full Text PDF

Background: Monozygotic twins (MZTs) are associated with high risks of maternal and fetal complications. Even with the widely used elective single embryo transfer (SET), the risk of MZTs following assisted reproductive technology (ART) treatments remains. However, most studies of MZTs focused on the relevant etiology, with few studies describing pregnancy and neonatal outcomes.

View Article and Find Full Text PDF

We previously reported that transplantation of menstrual blood-derived stromal cells (MenSCs) significantly improved fertility restoration in intrauterine adhesion (IUA). However, it is difficult to obtain menstrual blood samples in some severe IUA patients who have amenorrhea or oligomenorrhea. Thus, a safe and effective stem cell replacement therapy is necessary to promote endometrial regeneration.

View Article and Find Full Text PDF

Background: Premature ovarian insufficiency (POI) is one of the major causes of infertility. We previously demonstrated that transplantation of menstrual blood-derived stromal cells (MenSCs) effectively improved ovarian function in a murine model of POI. Recent studies indicated that mesenchymal stem cell-derived exosomes were important components in tissue repair.

View Article and Find Full Text PDF

Background: Intrauterine adhesion (IUA) can cause serious damage to women's reproductive health, yet current treatment methods are difficult to achieve satisfactory results. In our previous studies, we demonstrated that menstrual-derived stromal stem cells (MenSCs), with high proliferative capacity and self-renewal ability, have a powerful therapeutic effect in patients with severe IUA. However, safety assessment of MenSCs transplantation is essential for its further application.

View Article and Find Full Text PDF

Intrauterine adhesion (IUA) is caused by endometrial damage and leads to the formation of scar fibrosis and repair disorders. We compared four different rat IUA modelling procedures in order to establish a stable animal model suitable for investigating IUA. Twenty female Sprague--Dawley rats were randomly divided into four groups.

View Article and Find Full Text PDF