We introduce MolPhase, an advanced algorithm for predicting protein phase separation (PS) behavior that improves accuracy and reliability by utilizing diverse physicochemical features and extensive experimental datasets. MolPhase applies a user-friendly interface to compare distinct biophysical features side-by-side along protein sequences. By additional comparison with structural predictions, MolPhase enables efficient predictions of new phase-separating proteins and guides hypothesis generation and experimental design.
View Article and Find Full Text PDFSTIM1 has been identified as a new warm sensor, but the exact molecular mechanism remains unclear. In this study, a variety of mutants of STIM1, Orai1 and Orai3 were generated. The single-cell calcium imaging and confocal analysis were used to evaluate the thermal sensitivity of the resulting STIM mutants and the interaction between STIM1 and Orai mutants in response to temperature.
View Article and Find Full Text PDFWhen thiolactic acid-capped gold nanoclusters (AuNCs@TLA) with strong near-infrared (NIR, 800 nm) emission were applied to detect metal ions, only Ag induced the generation of two new emission peaks at 610 and 670 nm in sequence and quenching the original NIR emission. The new peak at 670 nm generated after the 800-nm emission disappeared utterly. The ratiometric and turn-on responses showed different linear concentration ranges (0.
View Article and Find Full Text PDFJ Agric Food Chem
February 2022
Malt production is one of the important uses of barley, and its quality differs greatly depending on the barley varieties used. In this study, ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry technology was used to investigate the temporal changes of metabolites during malting in two barley varieties: Franklin (malt barley) and Yerong (non-malt barley). Also, differences in metabolite profiles were compared in the kilned malt between two other malt barley varieties (Copeland and Planet) and two non-malt varieties (ZD10 and Hua30).
View Article and Find Full Text PDFBound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states.
View Article and Find Full Text PDFRealizing robust quantum phenomena in strongly interacting systems is one of the central challenges in modern physical science. Approaches ranging from topological protection to quantum error correction are currently being explored across many different experimental platforms, including electrons in condensed-matter systems, trapped atoms and photons. Although photon-photon interactions are typically negligible in conventional optical media, strong interactions between individual photons have recently been engineered in several systems.
View Article and Find Full Text PDFThe primary objective of this study was to evaluate the effects of parallelogram-shaped pavement markings on vehicle speed and crashes in the vicinity of urban pedestrian crosswalks. The research team measured speed data at twelve sites, and crash data at eleven sites. Observational cross-sectional studies were conducted to identify if the effects of parallelogram-shaped pavement markings on vehicle speeds and speed violations were statistically significant.
View Article and Find Full Text PDFThe fundamental properties of light derive from its constituent particles--massless quanta (photons) that do not interact with one another. However, it has long been known that the realization of coherent interactions between individual photons, akin to those associated with conventional massive particles, could enable a wide variety of novel scientific and engineering applications. Here we demonstrate a quantum nonlinear medium inside which individual photons travel as massive particles with strong mutual attraction, such that the propagation of photon pairs is dominated by a two-photon bound state.
View Article and Find Full Text PDFThe realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons.
View Article and Find Full Text PDF