Hydrogel-based devices are widely used as flexible electronics, biosensors, soft robots, and intelligent human-machine interfaces. In these applications, high stretchability, low hysteresis, and anti-fatigue fracture are essential but can be rarely met in the same hydrogels simultaneously. Here, we demonstrate a hydrogel design using tandem-repeat proteins as the cross-linkers and random coiled polymers as the percolating network.
View Article and Find Full Text PDFMany load-bearing tissues, such as muscles and cartilages, show high elasticity, toughness, and fast recovery. However, combining these mechanical properties in the same synthetic biomaterials is fundamentally challenging. Here, we show that strong, tough, and fast-recovery hydrogels can be engineered using cross-linkers involving cooperative dynamic interactions.
View Article and Find Full Text PDFThe dynamic mechanical response of hydrogels is correlated with the intrinsic dynamics of the crosslinkers. Our experiments and theory show that polymer network structures can also affect the dynamic response of hydrogels by transducing swelling forces to the crosslinkers. Our results suggest a novel route to engineer complex time-dependent mechanical properties of soft materials for biomedical applications.
View Article and Find Full Text PDF