In order to shorten detection times and improve average precision in embedded devices, a lightweight and high-accuracy model is proposed to detect passion fruit in complex environments (e.g., with backlighting, occlusion, overlap, sun, cloud, or rain).
View Article and Find Full Text PDFAs a technology for emerging environmental applications, water electrolysis is a significant approach for producing clean hydrogen energy. In this work, we used an efficacious piezoelectric method to significantly improve the catalytic water splitting activity without affecting the morphology as well as the components by altering the bulk charge separation state inside the material. The obtained CuCoO nanorods were treated under a corona polarization apparatus, which significantly enhanced ferroelectricity relative to that before the polarization increasing the physical charge separation and piezoelectric potential energy, enhancing the green hydrogen production.
View Article and Find Full Text PDFA motor imagery brain-computer interface connects the human brain and computers via electroencephalography (EEG). However, individual differences in the frequency ranges of brain activity during motor imagery tasks pose a challenge, limiting the manual feature extraction for motor imagery classification. To extract features that match specific subjects, we proposed a novel motor imagery classification model using distinctive feature fusion with adaptive structural LASSO.
View Article and Find Full Text PDFBackground: Fibroblast growth factor 21 (), primarily secreted by the pancreas, liver, and adipose tissues, plays a pivotal role in regulating glucose and lipid metabolism. Acute pancreatitis (AP) is a common inflammatory disease with specific clinical manifestations. Many patients with diabetes present with concurrent inflammatory symptoms.
View Article and Find Full Text PDFPd-based electrocatalysts are the most effective catalysts for ethylene glycol oxidation reaction (EGOR), while the disadvantages of poor stability, low resistance to neutrophilic, and low catalytic activity seriously hamper the development of direct ethylene glycol fuel cells (DEGFCs). In this work, defect-riched PdCoZn nanosheets (D-PdCoZn NSs) with ultrathin 2D NSs and porous structures are fabricated through the solvothermal and alkali etching processes. Benefiting from the presence of defects and ultrathin 2D structures, D-PdCoZn NSs demonstrate excellent electrocatalytic activity and good durability against EGOR in alkaline media.
View Article and Find Full Text PDFDesign high-loading with superior activity and high atomic efficiency has consistently been a new frontier of heterogeneous catalysis while challenging in synthetic technology. In this work, a universal solid-state strategy is proposed for large scalable production of high-loading Ir clusters on porous hollow carbon nanobowls (Ir CSs/PHCNBs). The strong electronic interaction between metallic Ir cluster and C on PHCNBs leads to electron redistribution, which significantly improves the electron transfer rate on the interface.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. Fibroblast growth factor 21 (FGF21), which regulates glucose and lipid metabolism, has been proven to have a good effect on NAFLD. However, the modulating process between FGF21 and gut microbiota remains unclear in treating NAFLD.
View Article and Find Full Text PDFThe electrocatalytic nitrogen reduction reaction (NRR) is emerging as a great promise for ambient and sustainable NH production while it still suffers from the high adsorption energy of N , the difficulty of *NN protonation, and inevitable hydrogen evolution, leading to a great challenge for efficient NRR. Herein, we synthesized a series of amorphous trimetal Pd-based (PdCoM (M = Cu, Ag, Fe, Mo)) nanosheets (NSs) with an ultrathin 2D structure, which shows high efficiency and robust electrocatalytic nitrogen fixation. Among them, amorphous PdCoCu NSs exhibit excellent NRR activity at low overpotentials with an NH yield of 60.
View Article and Find Full Text PDFThe passivation engineering of the hole transport layer in perovskite solar cells (PSCs) has significantly decreased carrier accumulation and open circuit voltage () loss, as well as energy band mismatching, thus achieving the goal of high-power conversion efficiency. However, most devices incorporating organic/inorganic buffer layers suffer from poor stability and low efficiency. In this article, we have proposed an inorganic buffer layer of CuO, which has achieved high efficiency on lower work function metals and various frequently used hole transport layers (HTLs).
View Article and Find Full Text PDF