Coupled two-dimensional electron-hole bilayers provide a unique platform to study strongly correlated Bose-Fermi mixtures in condensed matter. Electrons and holes in spatially separated layers can bind to form interlayer excitons, composite Bosons expected to support high-temperature exciton condensates. The interlayer excitons can also interact strongly with excess charge carriers when electron and hole densities are unequal.
View Article and Find Full Text PDFPb-free perovskite material is considered to be a promising material utilized in next-generation X-ray detectors due to its high X-ray absorption coefficient, decent carrier transport properties, and relatively low toxicity. However, the pixelation of the perovskite material with an industry-level photolithography processing method remains challenging due to its poor structural stability. Herein, we use CsAgBiBr perovskite material as the prototype and investigate its interaction with photolithographic polar solvents.
View Article and Find Full Text PDFElectro-optic (EO) modulation is of interest to impart information onto an optical carrier. Inorganic crystals-most notably LiNbO and BaTiO-exhibit EO modulation and good stability, but are difficult to integrate with silicon photonic technology. Solution-processed organic EO materials are readily integrated but suffer from thermal degradation at the temperatures required in operating conditions for accelerated reliability studies.
View Article and Find Full Text PDFSingle-crystal (SC) perovskite is currently a promising material due to its high quantum efficiency and long diffusion length. However, the reported perovskite photodetection range (<800 nm) and response time (>10 μs) are still limited. Here, to promote the development of perovskite-integrated optoelectronic devices, this work demonstrates wider photodetection range and shorter response time perovskite photodetector by integrating the SC CHNHPbBr (MAPbBr) perovskite on silicon (Si).
View Article and Find Full Text PDF