Publications by authors named "Qixin Chen"

Purpose: This study aimed to investigate the impact of paraspinal muscle (PSM) degeneration on coronal balance in patients with degenerative lumbar scoliosis (DLS) METHODS: In this retrospective cross-sectional study, 127 DLS patients who underwent spinal fusion surgery were reviewed. Preoperative X-rays and MRIs were used to assess PSM degeneration, measured by the cross-sectional area (CSA) and fat infiltration rate (FIR) of the multifidus (MF) and erector spinae (ES) muscles. The ratios of the convex to concave sides, namely RCSA and RFIR, were calculated.

View Article and Find Full Text PDF

Erectile dysfunction(ED), a prevalent condition within the male genitourinary system, significantly impairs the quality of life for affected men. Although certain inflammatory indicators, such as the neutrophil-to-lymphocyte ratio(NLR), systemic inflammatory response index (SIRI), and systemic immune-inflammation index(SII), have been linked to ED, the correlation with other markers and their impact on survival outcomes in ED patients remain largely unexplored. This research aims to investigate the correlation between inflammatory biomarkers derived from a complete blood cell count(CBC) and the occurrence of ED.

View Article and Find Full Text PDF

Lipid droplets (LDs) feature a unique monolayer lipid membrane that has not been extensively studied due to the lack of suitable molecular probes that are able to distinguish this membrane from the LD lipid core. In this work, we present a three-pronged molecular probe design strategy that combines lipophilicity-based organelle targeting with microenvironment-dependent activation and design an LD membrane labeling pro-probe called LDM. Upon activation by the HClO/ClO microenvironment that surrounds LDs, LDM pro-probe releases LDM-OH probe that binds to LD membrane proteins thus enabling visualization of the ring-like LD membrane.

View Article and Find Full Text PDF

Super-resolution imaging techniques, such as structured illumination microscopy (SIM), have enabled researchers to obtain nanoscale organelle-level outputs in living systems, but they impose additional stringent requirements on fluorescence probes. However, high-performance, custom-designed SIM probes that can explain underlying biological processes remain unavailable. Herein, a customizable engineering toolkit is developed for the facile assembly of SIM probes suitable for subcellular component detection.

View Article and Find Full Text PDF

Crystal violet (CV) residues in Marine food have produced a severe health threat in human life. In this study, we proposed a semiconductor surface-enhanced Raman scattering (SERS) sensor of corrosion-resistant Polyaniline/Graphene oxide (PPy/GO) film by electrochemical growth method to detect CV residues in fresh fish tissue. A PPy/GO dispersion solution was one-step deposited on a stainless steel sheet surface by electrochemical polymerization process to form a PPy/GO composite film acting as a semiconductor SERS substrate.

View Article and Find Full Text PDF

Background: Lateral lumbar interbody fusion (LLIF) is a minimally invasive fusion technique that can be performed with lateral plate. Insufficient contact between the endplate and bone graft may result in cage subsidence. This study aimed to investigate the potential risk factor for high-grade cage subsidence (HCS) occurring after LLIF supplemented with lateral plate.

View Article and Find Full Text PDF

Objective: Lower limb discrepancy (LLD) was frequently observed in patients with idiopathic scoliosis (IS), potentially associated with etiopathogenesis. Although sole lifts had been proposed as a conservative treatment for IS, evidence supporting their efficacy was limited. This study aimed to assess the effects of sole lift intervention on pediatric patients with mild IS, specifically focusing on thoracolumbar/lumbar (TL/L) curvature.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology.

View Article and Find Full Text PDF

Unlike chemosynthetic drugs designed for specific molecular and disease targets, active small-molecule natural products typically have a wide range of bioactivities and multiple targets, necessitating extensive screening and development. To address this issue, we propose a strategy for the direct microdynamic examination of potential drug candidates to rapidly identify their effects and mechanisms of action. As a proof-of-concept, we investigated the behavior of mussel oligosaccharide (MOS-1) by tracking the subcellular dynamics of fluorescently labeled MOS-1 in cultured cells.

View Article and Find Full Text PDF

Spinal cord injuries impose a notably economic burden on society, mainly because of the severe after-effects they cause. Despite the ongoing development of various therapies for spinal cord injuries, their effectiveness remains unsatisfactory. However, a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.

View Article and Find Full Text PDF
Article Synopsis
  • - The study addresses challenges in tissue regeneration due to the degeneration of somatic cells and loss of stem/progenitor cells, specifically focusing on intervertebral disc degeneration (IVDD).
  • - Researchers discovered that a combination of three factors (OCT4, FOXA2, TBXT) can reprogram degenerative cells into induced notochordal-like cells, aiding in potentially reversing IVDD.
  • - The technique involved single-cell transcriptomics to understand cell identity changes and utilized a viral injection method in rat models to promote cell regeneration, showing promise for treating degenerative disc diseases.
View Article and Find Full Text PDF

The visualization of drugs in living systems has become key techniques in modern therapeutics. Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization. At the subcellular level, super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs.

View Article and Find Full Text PDF

Cardiac hypertrophy characterized by abnormal cardiomyocyte viscosity is a typical sign of heart failure (HF) with vital importance for early diagnosis. However, current biochemical and imaging diagnostic methods are unable to detect this subclinical manifestation. In this work, we developed a series of NIR-I fluorescence probes for detecting myocardial viscosity based on the pyridazinone scaffold.

View Article and Find Full Text PDF

Ischemic stroke is a devastating medical condition with poor prognosis due to the lack of effective treatment modalities. Transplantation of human neural stem cells or primary neural cells is a promising treatment approach, but this is hindered by limited suitable cell sources and low expansion capacity. This study aimed (1) use small molecules (SM) to reprogram gingival mesenchymal stem cells (GMSCs) commitment to the neural lineage cells , and (2) use hyaluronic acid (HA) hydrogel scaffolds seeded with GMSCs-derived neural lineage cells to treat ischemic stroke .

View Article and Find Full Text PDF

Small molecule drugs play a pivotal role in the arsenal of anticancer pharmacological agents. Nonetheless, their small size poses a challenge when directly visualizing their localization, distribution, mechanism of action (MOA), and target engagement at the subcellular level in real time. We propose a strategy for developing triple-functioning drug beacons that seamlessly integrate therapeutically relevant bioactivity, precise subcellular localization, and direct visualization capabilities within a single molecular entity.

View Article and Find Full Text PDF

Circular RNAs (circRNAs) play a critical regulatory role in degenerative diseases; however, their functions and therapeutic applications in intervertebral disc degeneration (IVDD) have not been explored. Here, we identified that a novel circATXN1 highly accumulates in aging nucleus pulposus cells (NPCs) accountable for IVDD. CircATXN1 accelerates cellular senescence, disrupts extracellular matrix organization, and inhibits mitochondrial respiration.

View Article and Find Full Text PDF

The intestinal pathogen Salmonella enterica rapidly enters the bloodstream after the invasion of intestinal epithelial cells, but how Salmonella breaks through the gut-vascular barrier is largely unknown. Here, we report that Salmonella enters the bloodstream through intestinal CX3CR1 macrophages during early infection. Mechanistically, Salmonella induces the migration/invasion properties of macrophages in a manner dependent on host cell actin and on the pathogen effector SteC.

View Article and Find Full Text PDF

Disordered reactive oxygen/nitrogen species are a common occurrence in various diseases, which usually cause cellular oxidative damage and inflammation. Despite the wide range of applications for biomimetic nanoparticles with antioxidant or anti-inflammatory properties, designs that seamlessly integrate these two abilities with a synergistic effect in a simple manner are seldom reported. In this study, we developed a novel PEI-Mn composite nanoparticle (PM NP) using a chelation method, and the curcumin was loaded onto PM NPs via metal-phenol coordination to form PEI-Mn@curcumin nanoparticles (PMC NPs).

View Article and Find Full Text PDF

The CH + OH reaction is an important acetylene oxidation pathway in the combustion process, as well as a typical multi-well and multi-channel reaction. Here, we report an accurate full-dimensional machine learning-based potential energy surface (PES) for the CH + OH reaction at the UCCSD(T)-F12b/cc-pVTZ-F12 level, based on about 475 000 points. Extensive quasi-classical trajectory (QCT) calculations were performed on the newly developed PES to obtain detailed dynamic data and analyze reaction mechanisms.

View Article and Find Full Text PDF

Background: Several clinical studies have suggested that the early administration of statins could reduce the risk of in-hospital mortality in acute myocardial infarction (AMI) patients. Recently, some studies have identified that stimulating lymphangiogenesis after AMI could improve cardiac function by reducing myocardial edema and inflammation. This study aimed to identify the effect of rosuvastatin on postinfarct lymphangiogenesis and to identify the underlying mechanism of this effect.

View Article and Find Full Text PDF

Objective: The study aimed to compare the incidence of intraoperative endplate injury in patients who underwent Transforaminal interbody fusion (TLIF) and mini-open lumbar interbody fusion (LLIF) surgery. The independent risk factors related to endplate injury in LLIF procedure were analyzed.

Methods: A total of 199 patients who underwent LLIF ( = 106) or TLIF ( = 93) surgery from June 2019 to September 2021 were reviewed.

View Article and Find Full Text PDF

Mitochondria are dynamic organelles that undergo fusion and fission events, in which the mitochondrial membrane and DNA (mtDNA) play critical roles. The spatiotemporal organization of mtDNA reflects and impacts mitochondrial dynamics. Herein, to study the detailed dynamics of mitochondrial membrane and mtDNA, we rationally develop a dual-color fluorescent probe, mtGLP, that could be used for simultaneously monitoring mitochondrial membrane and mtDNA dynamics via separate color outputs.

View Article and Find Full Text PDF

This study focuses on the development of a highly sensitive surface-enhanced Raman scattering (SERS) sensor for detecting homocysteine (Hcy) molecules. The Hcy sensor was created by depositing silver nanoparticles (AgNPs) onto the surface of graphene oxide (GO) film to form a dense AgNPs@GO composite film. The AgNPs on the composite film interacted with sulfur atoms (S) of Hcy molecules to form Ag-S bonds, which boosted the chemisorption of Hcy molecules and enabled them to be specifically recognized.

View Article and Find Full Text PDF

Background Context: In clinical practice, acute trauma and chronic degeneration of the annulus fibrosus (AF) can promote further degeneration of the intervertebral disc (IVD). Therefore, it is critical to understand the AF repair process and its consequences on IVD. However, the lack of cost-effective and reproducible in vivo animal models of AF injury has limited research development in this field.

View Article and Find Full Text PDF