The ability to edit plant genomes through gene targeting (GT) requires efficient methods to deliver both sequence-specific nucleases (SSNs) and repair templates to plant cells. This is typically achieved using Agrobacterium T-DNA, biolistics or by stably integrating nuclease-encoding cassettes and repair templates into the plant genome. In dicotyledonous plants, such as Nicotinana tabacum (tobacco) and Solanum lycopersicum (tomato), greater than 10-fold enhancements in GT frequencies have been achieved using DNA virus-based replicons.
View Article and Find Full Text PDFGenome editing technologies using engineered nucleases have been widely used in many model organisms. Genome editing with sequence-specific nuclease (SSN) creates DNA double-strand breaks (DSBs) in the genomic target sites that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathways, which can be employed to achieve targeted genome modifications such as gene mutations, insertions, replacements or chromosome rearrangements. There are three major SSNs─zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) system.
View Article and Find Full Text PDFPlant Biotechnol J
August 2015
Fragrant rice is favoured worldwide because of its agreeable scent. The presence of a defective badh2 allele encoding betaine aldehyde dehydrogenase (BADH2) results in the synthesis of 2-acetyl-1-pyrroline (2AP), which is a major fragrance compound. Here, transcription activator-like effector nucleases (TALENs) were engineered to target and disrupt the OsBADH2 gene.
View Article and Find Full Text PDFTargeted genome editing nucleases, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), are powerful tools for understanding gene function and for developing valuable new traits in plants. The clustered regularly interspersed short palindromic repeats (CRISPR)/Cas system has recently emerged as an alternative nuclease-based method for efficient and versatile genome engineering. In this system, only the 20-nt targeting sequence within the single-guide RNA (sgRNA) needs to be changed to target different genes.
View Article and Find Full Text PDFSequence-specific nucleases have been applied to engineer targeted modifications in polyploid genomes, but simultaneous modification of multiple homoeoalleles has not been reported. Here we use transcription activator-like effector nuclease (TALEN) and clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 (refs. 4,5) technologies in hexaploid bread wheat to introduce targeted mutations in the three homoeoalleles that encode MILDEW-RESISTANCE LOCUS (MLO) proteins.
View Article and Find Full Text PDFBacteria and archaea have evolved an adaptive immune system, known as type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system, which uses short RNA to direct the degradation of target sequences present in invading viral and plasmid DNAs. Recent advances in CRISPR/Cas system provide an improved method for genome editing, showing robust and specific RNA-guided endonuclease activity at targeted endogenous genomic loci. It is the latest technology to modify genome DNA specifically and effectively following zinc finger nucleases (ZFNs) and TALE nucleases (TALENs).
View Article and Find Full Text PDFTargeted gene mutagenesis is a powerful tool for elucidating gene function and facilitating genetic improvement in rice. TALENs (transcription activator-like effector nucleases), consisting of a custom TALE DNA binding domain fused to a nonspecific FokI cleavage domain, are one of the most efficient genome engineering methods developed to date. The technology of TALENs allows DNA double-strand breaks (DSBs) to be introduced into predetermined chromosomal loci.
View Article and Find Full Text PDF