Microbial degradation plays a crucial role in removing sulfonamides from soil, enhancing sulfamethoxazole (SMX) remediation. To further augment SMX removal efficiency and mitigate the transmission risk associated with antibiotic resistance genes (ARGs), this study proposes a novel approach that integrates micro-animals, microorganisms, and microbial fuel cell (MFC) technology. The results showed that earthworm-MFC synergy substantially reduces SMX content and ARGs abundance in soil.
View Article and Find Full Text PDFObjective: To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke.
Methods: We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies.
Results: Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis.
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results.
View Article and Find Full Text PDFAim: To develop and validate a novel weighted score integrating multisystem laboratory and clinical variables to predict poor 3-month outcome (mRS score of 3-6) in acute ischemic stroke (AIS) patients with intravenous thrombolysis (IVT) therapy.
Methods: We retrospectively analyzed data from Trial of Revascularization Treatment for Acute Ischemic Stroke study. The Supra-Blan t score was derived using the data on age, the National Institutes of Health Stroke Scale score, history of atrial fibrillation, blood sugar level, neutrophil count, direct bilirubin level, platelet-lymphocyte ratio, and TnI level in the derivation cohort of 433 patients, and validated in a cohort of 525 patients.
Background And Purpose: Currently, acute ischemic stroke (AIS) is one of the most common and serious diseases in the world and is associated with very high mortality and morbidity even after thrombolysis therapy. This study aims to research the relationship between lactic dehydrogenase (LDH) and prognosis in AIS patients treated with intravenous rtPA.
Method: This study (a Multicenter Clinical Trial of Revascularization Treatment for Acute Ischemic Stroke, TRAIS) included 527 AIS patients in 5 cooperative medical institutions in China from January 2018 to February 2021.
Aims: To explore the association of total bilirubin (TBIL), direct bilirubin (DBIL), and indirect bilirubin (IBIL) levels with, as well as the incremental predictive value of different bilirubin subtypes for, poor outcomes in acute ischemic stroke patients after thrombolysis.
Methods: We analyzed 588 individuals out of 718 AIS participants, and all patients were followed up at 3 months after thrombolysis. The primary outcome was 3-month death and major disability (modified Rankin Scale (mRS) score of 3-6).
Asymmetric hydrogenation plays an essential role for both academic research and industry to produce enantiomeric pure chiral molecules. Although nuclear magnetic resonance (NMR) is powerful in determining the yields of hydrogenation, it is still challenging to use NMR for chirality-related analysis. Herein, we applied parahydrogen-induced hyperpolarization (PHIP) NMR to determine the enantioselectivity of asymmetric hydrogenation and the absolute chirality of products.
View Article and Find Full Text PDFAims: Morinda officinalis oligosaccharides (MOOs), a traditional Chinese medicine, have been used to treat mild and moderate depressive episodes. In this study, we investigated whether MOOs can ameliorate depressive-like behaviors in post-stroke depression (PSD) rats and further explored its mechanism by suppressing microglial NLRP3 inflammasome activation to inhibit hippocampal inflammation.
Methods: Behavioral tests were performed to evaluate the effect of MOOs on depressive-like behaviors in PSD rats.
Ischemic stroke is one of the most serious diseases today, and only a minority of patients are provided with effective clinical treatment. Importantly, leukocytes have gradually been discovered to play vital roles in stroke thrombosis, including promoting the activation of thrombin and the adhesion and aggregation of platelets. However, they have not received enough attention in the field of acute ischemic stroke.
View Article and Find Full Text PDFThe purpose of this study was to explore the influence of environmental colour on people's lateral and logical abilities. This was done by evaluating study participants' response time and error rate when completing six types of psychometric tests that were performed in various hue backgrounds on a computer. To maximise the colour stimulation provided by the monitor, the experiment was carried out in a dark laboratory.
View Article and Find Full Text PDFPoststroke depression (PSD) is one of the most common psychiatric diseases afflicting stroke survivors, yet the underlying mechanism is poorly understood. The pathophysiology of PSD is presumably multifactorial, involving ischemia-induced disturbance in the context of psychosocial distress. The homeostasis of glucose metabolism is crucial to neural activity.
View Article and Find Full Text PDFParkinson's disease has become one of the most common neurodegenerative diseases. Pathological changes typically manifest following dopaminergic neuron loss in the substantia nigra and abnormal alpha-synuclein (α-syn) aggregation in the neurons. α-Syn is the major component of Lewy bodies.
View Article and Find Full Text PDFDyskinesia, a major motor complication resulting from dopamine replacement treatment, manifests as involuntary hyperkinetic or dystonic movements. This condition poses a challenge to the treatment of Parkinson's disease. So far, several behavioral models based on rodent with dyskinesia have been established.
View Article and Find Full Text PDFFront Cell Neurosci
December 2018
Dopaminergic neurons loss is one of the main pathological characters of Parkinson's disease (PD), while no suitable neuroprotective agents have been in clinical use. Thyrotropin-releasing hormone (TRH) and its analogs protect neurons from ischemia and various cytotoxins, but whether the effect also applies in PD models remain unclear. Here, we showed that Taltirelin, a long-acting TRH analog, exhibited the neuroprotective effect in both cellular and animal models of PD.
View Article and Find Full Text PDFThyrotropin-releasing hormone (TRH) and its analogs are able to stimulate the release of the endogenic dopamine (DA) in the central nervous system. However, this effect has not been tested in the Parkinson's disease (PD), which is characterized by the DA deficiency due to the dopaminergic neurons loss in the substantia nigra. Here, we investigated the therapeutic effect of Taltirelin, a long-acting TRH analog on 6-hydroxydopamine-lesioned hemi-Parkinsonian rat model.
View Article and Find Full Text PDF