Publications by authors named "Qiuzi Yi"

The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing anti-apoptotic activities.

View Article and Find Full Text PDF

The ADP/ATP carrier (AAC) plays a central role in oxidative metabolism by exchanging ATP and ADP across the inner mitochondrial membrane. Previous experiments have shown the involvement of the matrix loops of AAC in its function, yet potential mechanisms remain largely elusive. One obstacle is the limited information on the structural dynamics of the matrix loops.

View Article and Find Full Text PDF

Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive.

View Article and Find Full Text PDF

The ADP/ATP carrier (AAC) is crucial for mitochondrial functions by importing ADP and exporting ATP across the inner mitochondrial membrane. However, the mechanism of highly specific ADP recognition and transport by AAC remains largely elusive. In this work, spontaneous ADP binding process to the ground c-state AAC was investigated through rigorous molecular dynamics simulations of over 31 microseconds in total.

View Article and Find Full Text PDF

The mitochondrial ADP/ATP carrier (AAC) exports ATP and imports ADP through alternating between cytosol-open (c-) and matrix-open (m-) states. The salt bridge networks near the matrix side (m-gate) and cytosol side (c-gate) are thought to be crucial for state transitions, yet our knowledge on these networks is still limited. In the current work, we focus on more conserved m-gate network in the c-state AAC.

View Article and Find Full Text PDF

Purpose: To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations.

Methods: Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.

View Article and Find Full Text PDF

Mitochondria maintain a distinct pool of ribosomal machinery, including tRNAs and tRNAs activating enzymes, such as mitochondrial tyrosyl-tRNA synthetase (YARS2). Mutations in YARS2, which typically lead to the impairment of mitochondrial protein synthesis, have been linked to an array of human diseases including optic neuropathy. However, the lack of YARS2 mutation animal model makes us difficult to elucidate the pathophysiology underlying YARS2 deficiency.

View Article and Find Full Text PDF

The pathogenesis of very-long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is highly heterogeneous and still unclear. Additional novel variants have been recently detected in the population. The molecular and cellular effects of these previously unreported variants are still poorly understood and require further characterization.

View Article and Find Full Text PDF

The ADP/ATP carrier (AAC) transports matrix ATP and cytosolic ADP across the inner mitochondrial membrane (IMM). It is well known that cardiolipin (CL) plays an important role in regulating the function of AAC, yet the underlying mechanism still remains elusive. AAC is composed of three homologous domains, and three specific CL binding sites are located at the domain-domain interfaces near the matrix side.

View Article and Find Full Text PDF

Leber's hereditary optic neuropathy (LHON) is a maternal inheritance of eye disease because of the mitochondrial DNA (mtDNA) mutations. We previously discovered a 3866T>C mutation within the gene for the ND1 subunit of complex I as possibly amplifying disease progression for patients bearing the disease-causing 11778G>A mutation within the gene for the ND4 subunit of complex I. However, whether and how the ND1 mutation exacerbates the ND4 mutation were unknown.

View Article and Find Full Text PDF

The deafness-associated m.12201T>C mutation affects the A5-U68 base-pairing within the acceptor stem of mitochondrial tRNA The primary defect in this mutation is an alteration in tRNA aminoacylation. Here, we further investigate the molecular mechanism of the deafness-associated tRNA 12201T>C mutation and test whether the overexpression of the human mitochondrial histidyl-tRNA synthetase gene () in cytoplasmic hybrid (cybrid) cells carrying the m.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers discovered that a specific mutation in mitochondrial tyrosyl-tRNA synthetase 2 (YARS2) interacts with a tRNA mutation to enhance the severity of deafness in a Chinese family.
  • The tRNA mutation leads to changes in its structure and function, resulting in defects in how the tRNA is processed and utilized inside the cell.
  • Cell lines with both mutations showed significantly worse issues with aminoacylation and mitochondrial function compared to those with only one of the mutations, highlighting the combined effect of these genetic changes on cellular health and deafness.
View Article and Find Full Text PDF

The ADP/ATP carrier (AAC) is a transporter responsible for the equal molar exchange of cytosolic ADP and ATP synthesized within mitochondrial matrix across the mitochondrial membrane. Its primary structure consists of three homologous repeats, and each repeat contains a conserved motif that is shared by all members of the mitochondrial carrier family (MCF). Although these MCF motif residues cluster together in the crystal structure of AAC, detailed analyses on the interactions among the motif residues are still limited.

View Article and Find Full Text PDF