Publications by authors named "Qiuyao Jiang"

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Biohybrid photocatalysts are composite materials that combine the efficient light-absorbing properties of synthetic materials with the highly evolved metabolic pathways and self-repair mechanisms of biological systems. Here, we show the potential of conjugated polymers as photosensitizers in biohybrid systems by combining a series of polymer nanoparticles with engineered cells. Under simulated solar light irradiation, the biohybrid system consisting of fluorene/dibenzo []thiophene sulfone copolymer (LP41) and recombinant (i.

View Article and Find Full Text PDF

Carboxysomes are a paradigm of self-assembling proteinaceous organelles found in nature, offering compartmentalisation of enzymes and pathways to enhance carbon fixation. In α-carboxysomes, the disordered linker protein CsoS2 plays an essential role in carboxysome assembly and Rubisco encapsulation. Its mechanism of action, however, is not fully understood.

View Article and Find Full Text PDF

Metallic nanomaterials (MNMs) are widely used in the medical field because of their photocatalytic, optical, electrical, electronic, antibacterial, and bactericidal properties. Despite the advantages of MNMs, there is a lack of complete understanding of their toxicological behavior and their interactions with cellular mechanisms that determine cell fate. Most of the existing studies are acute toxicity studies with high doses, which is not conducive to understanding the toxic effects and mechanisms of homeostasis-dependent organelles, such as mitochondria, which are involved in many cellular functions.

View Article and Find Full Text PDF

Hydrogenases are microbial metalloenzymes capable of catalyzing the reversible interconversion between molecular hydrogen and protons with high efficiency, and have great potential in the development of new electrocatalysts for renewable fuel production. Here, we engineered the intact proteinaceous shell of the carboxysome, a self-assembling protein organelle for CO fixation in cyanobacteria and proteobacteria, and sequestered heterologously produced [NiFe]-hydrogenases into the carboxysome shell. The protein-based hybrid catalyst produced in shows substantially improved hydrogen production under both aerobic and anaerobic conditions and enhanced material and functional robustness, compared to unencapsulated [NiFe]-hydrogenases.

View Article and Find Full Text PDF

The carboxysome is a protein-based nanoscale organelle in cyanobacteria and many proteobacteria, which encapsulates the key CO-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase (CA) within a polyhedral protein shell. The intrinsic self-assembly and architectural features of carboxysomes and the semipermeability of the protein shell provide the foundation for the accumulation of CO within carboxysomes and enhanced carboxylation. Here, we develop an approach to determine the interior pH conditions and inorganic carbon accumulation within an α-carboxysome shell derived from a chemoautotrophic proteobacterium and evaluate the shell permeability.

View Article and Find Full Text PDF

The carboxysome is a versatile paradigm of prokaryotic organelles and is a proteinaceous self-assembling microcompartment that plays essential roles in carbon fixation in all cyanobacteria and some chemoautotrophs. The carboxysome encapsulates the central CO-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), using a polyhedral protein shell that is selectively permeable to specific metabolites in favor of Rubisco carboxylation. There is tremendous interest in repurposing carboxysomes to boost carbon fixation in heterologous organisms.

View Article and Find Full Text PDF

Compartmentalization is a ubiquitous building principle in cells, which permits segregation of biological elements and reactions. The carboxysome is a specialized bacterial organelle that encapsulates enzymes into a virus-like protein shell and plays essential roles in photosynthetic carbon fixation. The naturally designed architecture, semi-permeability, and catalytic improvement of carboxysomes have inspired rational design and engineering of new nanomaterials to incorporate desired enzymes into the protein shell for enhanced catalytic performance.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla and provide a means for compartmentalizing specific metabolic pathways. They sequester catalytic enzymes from the cytoplasm, using an icosahedral proteinaceous shell with selective permeability to metabolic molecules and substrates, to enhance metabolic efficiency. Carboxysomes were the first BMCs discovered and their unprecedented capacity of CO fixation allows cyanobacteria to make a significant contribution to global carbon fixation.

View Article and Find Full Text PDF