Plants have evolved a lignin-based Casparian strip (CS) in roots that restricts passive diffusion of mineral elements from the soil to the stele. However, the molecular mechanisms underlying CS formation in rice (Oryza sativa), which contains a CS at both the exodermis and endodermis, are poorly understood. Here, we demonstrate that CS formation at the rice endodermis is redundantly regulated by three MYELOBLASTOSIS (MYB) transcription factors, OsMYB36a, OsMYB36b, and OsMYB36c, that are highly expressed in root tips.
View Article and Find Full Text PDFThe Casparian strip domain protein 1 () is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca transport to the stele. Here, we demonstrated that overexpression enhanced Ca tolerance in rice.
View Article and Find Full Text PDFCadmium (Cd) is a highly toxic element to living organisms, and its accumulation in the edible portions of crops poses a potential threat for human health. The molecular mechanisms underlying Cd detoxification and accumulation are not fully understood in plants. In this study, the involvement of a C-type ABC transporter, OsABCC9, in Cd tolerance and accumulation in rice was investigated.
View Article and Find Full Text PDFAmino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to different families, these amino acid transporters usually exhibit some general features, such as broad expression pattern and substrate selectivity.
View Article and Find Full Text PDFOsCASP1 (Casparian strip domain protein 1) was recently identified to function in Casparian strip (CS) formation at the endodermal cells in rice roots, which was required for selective mineral uptake in rice. Here, we further investigate the functional form of OsCASP1 . Expression analysis shows that , and were expressed in roots apart from .
View Article and Find Full Text PDFBackground: Research on plant amino acid transporters was mainly performed in Arabidopsis, while our understanding of them is generally scant in rice. OsLHT1 (Lysine/Histidine transporter) has been previously reported as a histidine transporter in yeast, but its substrate profile and function in planta are unclear. The aims of this study are to analyze the substrate selectivity of OsLHT1 and influence of its disruption on rice growth and fecundity.
View Article and Find Full Text PDF