Publications by authors named "Qiusheng Lian"

Deep convolutional neural networks (CNNs) have been very successful in image denoising. However, with the growth of the depth of plain networks, CNNs may result in performance degradation. The lack of network depth leads to the limited ability of the network to extract image features and difficults to fuse the shallow image features into the deep image information.

View Article and Find Full Text PDF

Visual identification of cattle in the wild provides an essential way for real-time cattle monitoring applicable to precision livestock farming. Chinese Simmental exhibit a yellow or brown coat with individually characteristic white stripes or spots, which makes a biometric identifier for identification possible. This work employed the observable biometric characteristics to perform cattle identification with an image from any viewpoint.

View Article and Find Full Text PDF

The image representation plays an important role in compressed sensing magnetic resonance imaging (CSMRI). However, how to adaptive sparsely represent images is a challenge for accurately reconstructing magnetic resonance (MR) images from highly undersampled data with noise. In order to further improve the reconstruction quality of the MR image, this paper first proposes tight frame-based group sparsity (TFGS) regularization that can capture the structure information of images appropriately, then TFGS regularization is employed to the image cartoon-texture decomposition model to construct CSMRI algorithm, termed cartoon-texture decomposition CSMRI algorithm (CD-MRI).

View Article and Find Full Text PDF

The medical magnetic resonance (MR) image reconstruction is one of the key technologies in the field of magnetic resonance imaging (MRI). The compressed sensing (CS) theory indicates that the image can be reconstructed accurately from highly undersampled measurements by using the sparsity of the MR image. However, how to improve the image reconstruction quality by employing more sparse priors of the image becomes a crucial issue for MRI.

View Article and Find Full Text PDF

We propose a numerical and totally automatic phase aberration compensation method in digital holographic microscopy. The phase aberrations are extracted in a nonlinear optimization procedure in which the phase variation of the reconstructed object wave is minimized. Not only phase curvature but also high-order aberrations could be corrected without extra devices.

View Article and Find Full Text PDF

At present, the sparse representation-based classification (SRC) has become an important approach in electroencephalograph (EEG) signal analysis, by which the data is sparsely represented on the basis of a fixed dictionary or learned dictionary and classified based on the reconstruction criteria. SRC methods have been used to analyze the EEG signals of epilepsy, cognitive impairment and brain computer interface (BCI), which made rapid progress including the improvement in computational accuracy, efficiency and robustness. However, these methods have deficiencies in real-time performance, generalization ability and the dependence of labeled sample in the analysis of the EEG signals.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9k5fupmsl7ghvdv72gjjnntppm8h4s46): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once