Mitochondrial dysfunction is considered one of the major pathogenic mechanisms of sepsis-induced cardiomyopathy (SIC). Pyruvate dehydrogenase kinase 4 (PDK4), a key regulator of mitochondrial metabolism, is essential for maintaining mitochondrial function. However, its specific role in SIC remains unclear.
View Article and Find Full Text PDFWe describe a unique strategy for generating thioesters from carboxylic acids and thioesters. This transformation features operational simplicity and high step-economy, wherein the -SR moiety of thioesters was smoothly transferred to carboxylic acid from thioacetates as the starting material. Various substrates with different levels of electronic nature were all applicable to this reaction, furnishing thioesters in moderate to outstanding yields.
View Article and Find Full Text PDFBackground: Sepsis-induced cardiomyopathy (SIC) is a cardiac dysfunction caused by sepsis, with mitochondrial dysfunction being a critical contributor. Pyruvate dehydrogenase kinase 4 (PDK4) is a kinase of pyruvate dehydrogenase with multifaceted actions in mitochondrial metabolism. However, its role in SIC remains unknown.
View Article and Find Full Text PDFHuman-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are cells with promising applications. However, their immaturity has restricted their use in cell therapy, disease modeling, and other studies. Therefore, the current study focused on inducing the maturation of CMs.
View Article and Find Full Text PDFThe thermal deformation behavior of the Mg-Gd-Y-Zr-Ag alloy was studied by isothermal hot compression tests at high temperatures. The flow stress increased with increased strain rates and decreased temperatures, first increasing and finally remaining stable with increased strain. A hot processing map was built.
View Article and Find Full Text PDFObjective: To investigate the effect of ferroptosis in BMSCs and explore the protective metabolism of ferrostatin-1 under GSDH treatment.
Methods: BMSCs were treated with GSDH to simulate the damaged microenvironment in vivo to establish a cell injury model. Propidium iodide and CCK8 were utilized to detect the ratio of dead cells and cell viability.
The metabolic patterns and energetics of human induced pluripotent stem cell-derived cardiomyocytes (HiPSC-CMs) are much less than those of normal adult cardiomyocytes, which has limited their application in disease therapy and regenerative medicine. It has been demonstrated that SIRT3, a mitochondria-target deacetylase, controls mitochondrial metabolism in physiological and pathological conditions. In this research, We investigated the role and regulatory mechanism of SIRT3 in energy metabolism in HiPSC-CMs.
View Article and Find Full Text PDFHerein we reported a novel approach to synthesize thioesters with -aryl thioformates as thioester sources. The reaction proceeded at ambient temperature using widely available starting ingredients, wherein the thioester moiety was smoothly transferred to aryl iodides from -aryl thioformates. A variety of substrates with various electronic natures were all tolerated under the reaction conditions to furnish desirable thioesters in ranges from moderate to excellent yields.
View Article and Find Full Text PDFTo investigate the effect of quenching rate on microstructure, residual stress (RS) and mechanical properties of a rare-earth wrought magnesium alloy Mg-Gd-Y-Zr-Ag-Er, RS in 20 °C water quenching (WQ (20 °C)), 100 °C water quenching (WQ (100 °C)) or air cooling (AC) conditions were measured and compared with the simulation results, corresponding mechanical properties and microstructure in quenching and aging state were studied. The decrease of quenching rate has little effect on the grain size but makes the twinning disappear, precipitates increase and the texture weakened, leading to easier brittle fracture after aging. WQ (100 °C) is the best quenching condition in this study, with a significant decline in RS and only 4.
View Article and Find Full Text PDFBackground: Bone marrow mesenchymal stem cell (BMSCs) therapy is an important cell transplantation strategy in the regenerative medicine field. However, a severely ischemic microenvironment, such as nutrient depletion and hypoxia, causes a lower survival rate of transplanted BMSCs, limiting the application of BMSCs. Therefore, improving BMSCs viability in adverse microenvironments is an important means to improve the effectiveness of BMSCs therapy.
View Article and Find Full Text PDFA facile and general method for palladium-catalyzed stereoselective bisthiolation of terminal alkynes with allyl phenyl sulfides has been developed. The scope and versatility of the reaction have been demonstrated, and a broad range of substrates bearing electron-donating and -withdrawing groups on the aromatic rings were all compatible with this reaction, providing the desired ()-1,2-dithio-1-alkenes in moderate to good yields. Preliminary mechanistic studies demonstrated that the sulfur source of the desired products may be successively incorporated into alkynes via C-S bond cleavage of two molecules of allyl phenyl sulfides and ruled out the possibility of vinyl sulfides, alkynyl sulfides, and disulfide intermediates being involved in this reaction.
View Article and Find Full Text PDF