Particles of sub-micron size possess significant capacity to adsorb organic molecules from aqueous media. Semiconductor photocatalysts in particle form could potentially be utilized for dye removal through either physical adsorption or photo-induced chemical process. The photocatalytic and adsorption capabilities of Cu₂O particles with various exposed crystal facets have been studied through separate adsorption capacity test and photocatalytic degradation test.
View Article and Find Full Text PDFA new two-dimensional (2D) oxosulfide, (N2H4)2Mn3Sb4S8(μ3-OH)2 (1), has been successfully synthesized under surfactant-thermal conditions with hexadecyltributylphosphonium bromide as the surfactant. Compound 1 has a layered structure and contains a novel [Mn3(μ3-OH)2]n chain along the b-axis. The photocatalytic activity for compound 1 has been demonstrated under visible-light irradiation and continuous H2 evolution was observed.
View Article and Find Full Text PDFFrom atomic level to understand the cluster-size-dependant behavior of dye-sensitized photocatalysts is very important and helpful to design new photocatalytic materials. Although the relationship between the photocatalytic behaviors and particles' size/shape has been widely investigated by theoretical scientists, the experimental evidences are much less. In this manuscript, we successfully synthesized three new ruthenium dye-sensitized polyoxometalates (POM-n, n relate to different size clusters) with different-sized POM clusters.
View Article and Find Full Text PDF