Publications by authors named "Qiulian Wu"

Article Synopsis
  • Glioblastoma (GBM) is a highly aggressive brain cancer that manages to evade immune responses, partly due to the influence of GBM stem cells and their metabolic shift towards lactate production.
  • The lactate produced by these stem cells leads to epigenetic changes in tumor cells, resulting in a "don't eat me" signal (CD47) that suppresses immune phagocytosis and promotes immunosuppressive behavior.
  • Targeting lactate production or the protein CBX3 can enhance the effectiveness of immunotherapy strategies, suggesting a potential new approach in treating GBM by overcoming its immune evasion tactics.
View Article and Find Full Text PDF

Tumors reprogram their metabolism to generate complex neoplastic ecosystems. Here, we demonstrate that glioblastoma (GBM) stem cells (GSCs) display elevated activity of the malate-aspartate shuttle (MAS) and expression of malate dehydrogenase 2 (MDH2). Genetic and pharmacologic targeting of MDH2 attenuated GSC proliferation, self-renewal, and in vivo tumor growth, partially rescued by aspartate.

View Article and Find Full Text PDF

MYC promotes tumor growth through multiple mechanisms. Here, we show that, in human glioblastomas, the variant transcript encodes a 114-amino acid peptide, MYC pre-mRNA encoded protein (MPEP), from the upstream open reading frame (uORF) . Secreted MPEP promotes patient-derived xenograft tumor growth in vivo, independent of MYC through direct binding, and activation of tropomyosin receptor kinase B (TRKB), which induces downstream AKT-mTOR signaling.

View Article and Find Full Text PDF

Background: It has been reported that circadian clock components, Brain and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), are uniquely essential for glioblastoma (GBM) stem cell (GSC) biology and survival. Consequently, we developed a novel Cryptochrome (CRY) activator SHP1705, which inhibits BMAL1-CLOCK transcriptional activity.

Methods: We analyzed buffy coats isolated from Phase 1 clinical trial subjects' blood to assess any changes to circadian, housekeeping, and blood transcriptome-based biomarkers following SHP1705 treatment.

View Article and Find Full Text PDF

To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride).

View Article and Find Full Text PDF

Background: Self-renewal of glioma stem cells (GSCs) is responsible for glioblastoma (GBM) therapy resistance and recurrence. Tumor necrosis factor α (TNFα) and TNF signaling pathway display an antitumor activity in preclinical models and in tumor patients. However, TNFα exhibits no significance for glioma clinical prognosis based on the Glioma Genome Atlas database.

View Article and Find Full Text PDF

Understanding the molecular mechanisms underlying tumorigenesis is crucial for developing effective cancer therapies. Here, we investigate the co-amplification of MED30 and MYC across diverse cancer types and its impact on oncogenic transcriptional programs. Transcriptional profiling of MYC and MED30 single or both overexpression/amplification revealed the over amount of MED30 lead MYC to a new transcriptional program that associate with poor prognosis.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that a type of brain cancer called glioblastoma has special cells that make more proteins than usual.
  • They discovered that a tiny machine called YRDC helps these cancer cells change their building blocks (tRNA) to make proteins faster.
  • Reducing threonine in food made these cancer cells grow slower and worked better with some cancer treatments, suggesting diet might help fight cancer.
View Article and Find Full Text PDF

Glioblastoma is one of the most lethal malignant cancers, displaying striking intratumor heterogeneity, with glioblastoma stem cells (GSCs) contributing to tumorigenesis and therapeutic resistance. Pharmacologic modulators of ubiquitin ligases and deubiquitinases are under development for cancer and other diseases. Here, we performed parallel in vitro and in vivo CRISPR/Cas9 knockout screens targeting human ubiquitin E3 ligases and deubiquitinases, revealing the E3 ligase RBBP6 as an essential factor for GSC maintenance.

View Article and Find Full Text PDF

Background: Being overweight or obese has become a serious public health concern, and accurate assessment of body composition is particularly important. More precise indicators of body fat composition include visceral adipose tissue (VAT) mass and total body fat percentage (TBF%). Study objectives included examining the relationships between abdominal fat mass, measured by quantitative computed tomography (QCT), and the whole-body and regional fat masses, measured by dual energy X-ray absorptiometry (DXA), as well as to derive equations for the prediction of TBF% using data obtained from multiple QCT slices.

View Article and Find Full Text PDF

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal.

View Article and Find Full Text PDF

Glioblastoma (GBM) ranks among the most lethal of human cancers, containing glioma stem cells (GSCs) that display therapeutic resistance. Here, we report that the lncRNA INHEG is highly expressed in GSCs compared to differentiated glioma cells (DGCs) and promotes GSC self-renewal and tumorigenicity through control of rRNA 2'-O-methylation. INHEG induces the interaction between SUMO2 E3 ligase TAF15 and NOP58, a core component of snoRNP that guides rRNA methylation, to regulate NOP58 sumoylation and accelerate the C/D box snoRNP assembly.

View Article and Find Full Text PDF

Growth factor receptors rank among the most important oncogenic pathways, but pharmacologic inhibitors often demonstrate limited benefit as monotherapy. Here, we show that epidermal growth factor receptor (EGFR) signaling repressed N-methyladenosine (mA) levels in glioblastoma stem cells (GSCs), whereas genetic or pharmacologic EGFR targeting elevated mA levels. Activated EGFR induced non-receptor tyrosine kinase SRC to phosphorylate the mA demethylase, AlkB homolog 5 (ALKBH5), thereby inhibiting chromosomal maintenance 1 (CRM1)-mediated nuclear export of ALKBH5 to permit sustained mRNA mA demethylation in the nucleus.

View Article and Find Full Text PDF

Purpose: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state.

View Article and Find Full Text PDF

Glioblastoma stem cells (GSCs) have unique properties of self-renewal and tumor initiation that make them potential therapeutic targets. Development of effective therapeutic strategies against GSCs requires both specificity of targeting and intracranial penetration through the blood-brain barrier. We have previously demonstrated the use of in vitro and in vivo phage display biopanning strategies to isolate glioblastoma targeting peptides.

View Article and Find Full Text PDF

Cancer cells rewire metabolism to favour the generation of specialized metabolites that support tumour growth and reshape the tumour microenvironment. Lysine functions as a biosynthetic molecule, energy source and antioxidant, but little is known about its pathological role in cancer. Here we show that glioblastoma stem cells (GSCs) reprogram lysine catabolism through the upregulation of lysine transporter SLC7A2 and crotonyl-coenzyme A (crotonyl-CoA)-producing enzyme glutaryl-CoA dehydrogenase (GCDH) with downregulation of the crotonyl-CoA hydratase enoyl-CoA hydratase short chain 1 (ECHS1), leading to accumulation of intracellular crotonyl-CoA and histone H4 lysine crotonylation.

View Article and Find Full Text PDF

Background: Accumulating evidence demonstrated that nuclear factor erythroid 2-related factor 2 (NRF2) expression plays a crucial role in the proliferation, invasion and metastasis of hepatocellular carcinoma (HCC). However, research on the effect of NRF2 genetic polymorphism on the development of chronic hepatitis B (CHB), HBV-related liver cirrhosis (LC) and HCC is still missing.

Methods: A total of 673 individuals were included in the study and classified into four groups: 110 CHB cases, 86 LC cases, 260 HCC cases, and 217 healthy controls.

View Article and Find Full Text PDF

Background: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors.

View Article and Find Full Text PDF

Glioblastoma is the most malignant primary brain tumor, the prognosis of which remains dismal even with aggressive surgical, medical, and radiation therapies. Glioblastoma stem cells (GSCs) promote therapeutic resistance and cellular heterogeneity due to their self-renewal properties and capacity for plasticity. To understand the molecular processes essential for maintaining GSCs, we performed an integrative analysis comparing active enhancer landscapes, transcriptional profiles, and functional genomics profiles of GSCs and non-neoplastic neural stem cells (NSCs).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells, particularly glioma stem cells (GSCs), have higher ribosome production rates than normal cells, which helps them grow quickly in tumors; the study identifies a factor called NIR that promotes this process in GSCs.
  • Using various experimental techniques, researchers found that NIR is linked to poor survival rates in glioblastoma patients and is crucial for the proliferation of GSCs and tumor growth by facilitating the transcription of ribosomal DNA.
  • The findings suggest that NIR could be a promising target for new therapies against glioblastoma by inhibiting its role in ribosome production and, consequently, tumor progression.
View Article and Find Full Text PDF

Glioblastoma ranks among the most aggressive and lethal of all human cancers. Self-renewing, highly tumorigenic glioblastoma stem cells (GSCs) contribute to therapeutic resistance and maintain cellular heterogeneity. Here, we interrogated superenhancer landscapes of primary glioblastoma specimens and patient-derived GSCs, revealing a kelch domain-containing gene, specifically Kelch domain containing 8A (KLHDC8A) with a previously unknown function as an epigenetically driven oncogene.

View Article and Find Full Text PDF

Unlabelled: Glioblastoma (GBM) is a complex ecosystem that includes a heterogeneous tumor population and the tumor-immune microenvironment (TIME), prominently containing tumor-associated macrophages (TAM) and microglia. Here, we demonstrated that β2-microglobulin (B2M), a subunit of the class I major histocompatibility complex (MHC-I), promotes the maintenance of stem-like neoplastic populations and reprograms the TIME to an anti-inflammatory, tumor-promoting state. B2M activated PI3K/AKT/mTOR signaling by interacting with PIP5K1A in GBM stem cells (GSC) and promoting MYC-induced secretion of transforming growth factor-β1 (TGFβ1).

View Article and Find Full Text PDF