Publications by authors named "Qiujin Li"

Microplastic pollution has become a significant environmental issue. One of the most important sources and components of microplastics is polyester fabric - polyethylene terephthalate (PET). Because the catalytic depolymerization of PET typically requires specific conditions such as alkaline environments, specific solvents, or high temperatures, there is an urgent need for a simpler, eco-friendly solution with high degradation efficiency for managing the vast amounts of PET textile waste.

View Article and Find Full Text PDF

Wearable sweat sensing devices have drawn much attention due to their noninvasive and portable properties, which is emerging as a promising technology in daily healthiness assessment issues. A sweat sensor based on Janus fabric and electrochemical analysis is proposed in this work. Unidirectional moisture transported behavior of the Janus fabric serves as the quick-drying component directly contacting skin to transfer sweat toward the detection site.

View Article and Find Full Text PDF

Herein we report a wearable sweat sensor of a Janus fabric based on surface enhanced Raman scattering (SERS) technology, mainly detecting the two important metabolites glucose and lactate. Janus fabric is composed of electrospinning PU on a piece of medical gauze (cotton), working as the unidirectional moisture transport component (R = 1305%) to collect and transfer sweat efficiently. SERS tags with different structures act as the probe to recognize and detect the glucose and lactate in high sensitivity.

View Article and Find Full Text PDF

Recently, metal-organic frameworks (MOFs) have been widely developed due to the rich porosity, excellent framework structure and multifunctional nature. Meanwhile, a series of MOFs crystals and MOF-based composites have been emerged. However, the widespread applications of MOFs are hindered by challenges such as rigidity, fragility, solution instability, and processing difficulties.

View Article and Find Full Text PDF
Article Synopsis
  • Hydrogels are crucial in fields like tissue engineering, but their application as load-bearing materials is limited due to difficulties in balancing toughness and stiffness.
  • A new composite hydrogel incorporates flexible SiO nanofibers within a polyvinyl alcohol matrix, achieved through freeze-drying and annealing techniques, leading to improved material properties.
  • The resulting FDA-SNF/PVA hydrogel demonstrates a favorable combination of stiffness (13.71 MPa) and toughness (9.9 MJ/m), alongside impressive tensile strength and elasticity, making it suitable for applications in artificial tendons and ligaments.
View Article and Find Full Text PDF

Introduction: Electronic cigarettes (E-cigs) are in a controversial state. Although E-cig aerosol generally contains fewer harmful substances than smoke from burned traditional cigarettes, aerosol along with other compounds of the E-cigs may also affect lung functions and promote the development of lung-related diseases. We investigated the effects of E-cig on the pulmonary functions of male C57BL/6 mice and reveal the potential underlying mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to analyze the genetic makeup of a blood donor with the Del phenotype in Yunnan.
  • Researchers identified the Rh serological phenotype and used specific techniques, including PCR-SSP typing and sequencing, to investigate the donor's genotype.
  • Results revealed a significant 1,003 bp deletion in the donor's DNA that affected exon 9, confirming that the donor exhibits the Del type due to this genetic deletion.
View Article and Find Full Text PDF

Zeolitic imidazolate framework-67 (ZIF-67) formed by Co and 2-methylimidazole (MIM) is widely used for adsorption and separation of pollutants. However, there are some disadvantages for ZIF-67 powder, such as strong electrostatic interaction and difficulty in recovery from the liquid phase. The available way to solve the above problems is choosing a suitable substrate to load ZIF-67.

View Article and Find Full Text PDF

Textile-based flexible electronic devices have attracted tremendous attention in wearable sensors due to their excellent skin affinity and conformability. However, the washing process of such devices may damage the electronic components. Here, a textile-based piezoresistive sensor with ultrahigh sensitivity was fabricated through the layered integration of gold nanowire (AuNW)-impregnated cotton fabric and silver ink screen-printed nylon fabric electrodes, sealing with Parafilm.

View Article and Find Full Text PDF

Polyethylene terephthalate (PET) is an important basic polymer, which was used widely in variety of fields. Due to its high crystallinity, compact structure and strong surface hydrophobicity, PET has prominent resistance to biodegradation. In recent years, microplastics, especially polyethylene terephthalate (PET) microplastics, was considered as serious threaten to ecosystems.

View Article and Find Full Text PDF

Building bio-based hydrogels with high strength and biocompatibility is still a challenge. Herein, we successfully constructed a hybrid double-network (DN) full biological hydrogel with excellent mechanical properties and biocompatibility by introducing a physically cross-linked gelatin (GEL) network in a covalently cross-linked poly (γ-glutamic acid) (γ-PGA) network. The γ-PGA-GEL DN hydrogel demonstrated ultra-high compression performance (38 MPa), which was better than all currently reported γ-PGA-based hydrogels, and its tensile performance (0.

View Article and Find Full Text PDF

Flexible biosensors for monitoring systems have emerged as a promising portable diagnostics platform due to their potential for in situ point-of-care (POC) analytic devices. Assessment of biological analytes in sweat can provide essential information for human physiology. Conventional measurements rely on laboratory equipment.

View Article and Find Full Text PDF

Natural polymer hydrogels are expected to be promising biomaterial because of its excellent biocompatibility and biodegradability, but they are soft and easily broken. Herein, the poly (γ-glutamic acid) (γ-PGA)/bacterial cellulose (BC) composite hydrogels with excellent mechanical properties were constructed by introducing bacterial cellulose. The γ-PGA/BC composite hydrogels were obtained by the covalent cross-linking of γ-PGA in the BC nanofibers suspensions.

View Article and Find Full Text PDF

This study reports the design of a stimulus-responsive fabric incorporating a combination of microcapsules, containing polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(styrene sulfonate) sodium salt (PSS), formed a layer-by-layer (LBL) approach. The use of PAH and PSS ensured that the microcapsule structure was robust and pH-sensitive. SEM and TEM studies showed that the composite microcapsule (PAH/PSS) PAH had a spherical morphology with a hollow structure.

View Article and Find Full Text PDF

Flexible conductive materials have greatly promoted the rapid development of intelligent and wearable textiles. This article reports the design of flexible polypyrrole/bacterial cellulose (PPy/BC) conductive nanocomposites by in situ chemical polymerization. Box-Behnken response surface methodology has been applied to optimize the process.

View Article and Find Full Text PDF

At present, the pollution of microplastic directly threatens ecology, food safety and even human health. Polyethylene terephthalate (PET) is one of the most common of microplastics. In this study, the micro-size PET particles were employed as analog of microplastic.

View Article and Find Full Text PDF

Microbial pigments, regarded as the most potential biomass pigments, have lately attracted increasing attention in textile dyeing due to their sustainability and cleaner production. The pyrrole structure microbial pigment, called prodigiosin, recently have become a research hotspot for its bright colors and antibacterial function. However, in most case the extraction and preparation are time-consuming and expensive processes since these kinds of microbial pigments are intracellular metabolites.

View Article and Find Full Text PDF

Bone morphogenetic protein (BMP)-9 has been associated with insulin resistance and type 2 diabetes mellitus. However, methods for delivering exogenous BMP-9 genes in vivo are lacking. In this study, we developed a gene delivery system using polyethyleneimine (PEI)-based core-shell nanoparticles (PCNs) as gene delivery carriers, and investigated the effectiveness and safety for delivery of the shBMP-9 gene.

View Article and Find Full Text PDF

Three ruminally fistulated Xuanhan steers weighting 312.5 (±23.85) kg were used to determine the kinetics of ruminal degradation of nutrients using in situ nylon bag technique, and a modified 3-step in vitro procedure was adopted to estimate intestinal digestibility of 16-h rumen undegradable protein (RUP) of maize cob (MC), distillers grains (DG), spent mushroom substrate (SMS), starch residue of sweet potato (SRSP), citrus pulp (CPP), and rice straw (RS).

View Article and Find Full Text PDF

Premature drug release is a common drawback in stimuli-responsive drug delivery systems (DDS), especially if it depends on internal triggers, which are hard to control, or a single external stimulus, which can only have one function. Thus, many DDS systems have been reported that combined different triggers; however, limited success has been established in fine-tuning the release process, mainly due to the poor bioavailability and complexity of the reported designs. This paper reports the design of a hybrid microcapsule (h-MC) by a simple layer-by-layer technique comprising polysaccharides (sodium alginate, chitosan, and hyaluronic acid), iron oxide, and graphene oxide (GO).

View Article and Find Full Text PDF

Graphene oxide-wrapped gold nanorods (GO@AuNRs) offer efficient drug delivery as well as NIR laser photothermal therapy (PTT) in vitro and in vivo. However, no real-time observation of drug release has been reported to better understand the synergy of chemotherapy and PTT. Herein, surface-enhance Raman spectroscopy (SERS) is employed to guide chemo-photothermal cancer therapy by a two-step mechanism.

View Article and Find Full Text PDF

Recycling of cellulases is an effective way to reduce the cost of enzymatic hydrolysis for the production of cellulosic ethanol. In this study, we examined the adsorption and desorption behaviors of cellulase at different pH values and temperatures. Furthermore, we developed a promising way to recover both free and bound cellulases by pH-triggered adsorption-desorption.

View Article and Find Full Text PDF

Enzyme-modified konjac glucomannan (KGM) and xanthan blend films have been prepared and characterized. Enzymatic hydrolysis of purified KGM by beta-mannanase yielded samples of various weight-average molecular weight (M(w)) that were determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) and calculated using the established Mark-Houwink-Sakurada equation [eta] = 4.07 x 10(-4)M(w)(0.

View Article and Find Full Text PDF