One of the hottest topics in plant hormone biology is the crosstalk mechanisms, whereby multiple classes of phytohormones interplay with each other through signaling networks. To better understand the roles of hormonal crosstalks in their complex regulatory networks, it is of high significance to investigate the spatial and temporal distributions of multiple -phytohormones simultaneously from one plant tissue sample. In this study, we develop a high-sensitivity and high-throughput method for the simultaneous quantitative analysis of 44 phytohormone compounds, covering currently known 10 major classes of phytohormones (strigolactones, brassinosteroids, gibberellins, auxin, abscisic acid, jasmonic acid, salicylic acid, cytokinins, ethylene, and polypeptide hormones [e.
View Article and Find Full Text PDFBackground: Brassica napus L. has little or no primary dormancy, but exhibits great variation in secondary dormancy. Secondary dormancy potential in oilseed rape can lead to the emergence of volunteer plants that cause genetic contamination, reduced quality and biosafety issues.
View Article and Find Full Text PDF