Research on the role of working memory (WM) in language processing has typically focused on WM for phonological information. However, considerable behavioral evidence supports the existence of a separate semantic WM system that plays a greater role in language processing. We review the neural evidence that supports the distinction between phonological and semantic WM capacities and discuss how individual differences in these capacities relate to sentence processing.
View Article and Find Full Text PDFHandb Clin Neurol
August 2022
There is a consensus that the temporal lobes are involved in representing various types of information critical for language processing, including phonological (i.e., speech sound), semantic (meaning), and orthographic (spelling) representations.
View Article and Find Full Text PDFThe neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations.
View Article and Find Full Text PDFBuffer accounts of verbal short-term memory (STM) assume dedicated buffers for maintaining different types of information (e.g., phonological, visual) whereas embedded processes accounts argue against the existence of buffers and claim that STM consists of the activated portion of long-term memory (LTM).
View Article and Find Full Text PDFAttention is often extolled for its selective neural properties. Yet, when powerfully captured by a salient unexpected event, attention can give rise to a broad cascade of systemic effects for evaluating and adaptively responding to the event. Using graph theory analysis combined with fMRI, we show here that the extensive psychophysiological and cognitive changes associated with such attention capture are related to large-scale distributed changes in the brain's functional connectivity.
View Article and Find Full Text PDFDebate continues regarding the necessary role of right superior temporal gyrus (STG) regions in sublexical speech perception given the bilateral STG activation often observed in fMRI studies. To evaluate the causal roles, TMS pulses were delivered to inhibit and disrupt neuronal activity at the left and right STG regions during a nonword discrimination task based on peak activations from a blocked fMRI paradigm assessing speech vs. nonspeech perception (N = 20).
View Article and Find Full Text PDFBuffer versus embedded processes accounts of short-term memory (STM) for phonological information were addressed by testing subjects' perception and memory for speech and non-speech auditory stimuli. Univariate and multivariate (MVPA) approaches were used to assess whether brain regions recruited in recognizing speech were involved in maintaining speech representations over a delay. As expected, a left superior temporal region was found to support speech perception.
View Article and Find Full Text PDFIn cognitive network neuroscience, the connectivity and community structure of the brain network is related to measures of cognitive performance, like attention and memory. Research in this emerging discipline has largely focused on two measures of connectivity-modularity and flexibility-which, for the most part, have been examined in isolation. The current project investigates the relationship between these two measures of connectivity and how they make separable contribution to predicting individual differences in performance on cognitive tasks.
View Article and Find Full Text PDFRecent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance.
View Article and Find Full Text PDFNumerous studies have revealed the essential role of the left lateral temporal cortex in auditory sentence comprehension along with evidence of the functional specialization of the anterior and posterior temporal sub-areas. However, it is unclear whether task demands (e.g.
View Article and Find Full Text PDF