In recent years, the global carbon cycle has garnered significant research attention. However, details of the intricate relationship between planktonic bacteria, hydrochemistry, and dissolved organic matter (DOM) in inland waters remain unclear, especially their effects on lake carbon sequestration. In this study, we analyzed 16S rRNA, chromophoric dissolved organic matter (CDOM), and inorganic nutrients in Erhai Lake, Yunnan Province, China.
View Article and Find Full Text PDFHuan Jing Ke Xue
January 2024
The composition of soil organic carbon and its stability mechanism are the key to understanding the terrestrial carbon sink capacity. The stability of soil organic carbon in a karst ecosystem greatly affects the soil carbon fixation capacity. In order to understand the impact of human activities on the stability of soil organic carbon in karst areas, the karst valley area of Zhongliang Mountain in Chongqing was selected as an example, and soil samples of four typical land use modes (mixed forest, bamboo forest, grassland, and cultivated land) were collected in layers to analyze the total organic carbon (TOC) and heavy fraction organic carbon (HFOC).
View Article and Find Full Text PDFBiological carbon pump (BCP) in karst areas has received intensive attention for years due to their significant contribution to the global missing carbon sink. The stability of autochthonous dissolved organic matter (Auto-DOM) produced by BCP in karst aquatic ecosystems may play a critical role in the missing carbon sink. However, the source of dissolved organic matter (DOM) in inland waters and its consumption by planktonic bacteria have not been thoroughly examined.
View Article and Find Full Text PDFRecalcitrant dissolved organic carbon (RDOC) resulting from microbial carbon (MCPs) holds promise as a relatively long-term natural carbon sink in marine environments. However, the RDOC formation mechanism remains uncertain in terrestrial aquatic systems. To determine the microbial impacts on autochthonous dissolved organic carbon (DOC), RDOC formation, and the critical influencing bacteria species, spatial changes in hydrochemistry, carbon isotopes, and microbial diversity were investigated in water samples from the karstic Lijiang River, southwest China.
View Article and Find Full Text PDFHuman interventions such as tunnel construction have caused groundwater depletion, which substantially affected the functions of forest tree species and their communities. However, the extent to which tunneling-induced groundwater depletion (TIGD) degrades their function levels at various spatial-temporal scales under varying climate conditions remains still unclear. Researchers used stand-scale dendrological records to track and extract the effects of TIGD associated with a single or series of tunneling events (three tunneling events during 1999-2001, 2006-2008, and 2010-2013) on short- and long-term growth levels of two dominant drought-tolerant tree species across (karst and non-karst) landscapes affected by tunnel construction and landscapes not subjected to tunnel construction in a mountainous forest ecosystem located in the southwest of China.
View Article and Find Full Text PDFImproving the management and protection of karst groundwater resources and addressing karst-related environmental and ecological problems still face challenges raised from the limited knowledge on the entire karstic Critical Zone (K-CZ), including soil, epikarst, the vadose and saturated zones. Particularly, there is still a lack of integrated understanding of K-CZ properties and major CZ processes across space and time. In this study, we measured and analyzed the hydrochemical and multiple stable isotopic compositions of soil water, surface- and groundwaters from various compartments of the K-CZ in a typical subtropical karst watershed - Qingmuguan (QKW), Southwestern China, in order to explore the source and spatiotemporal variations of water and solutes (C, N, S) within the K-CZ; thereby elucidating the hydrological and biogeochemical processes and their affecting factors.
View Article and Find Full Text PDFDissolved organic matter (DOM) in karst water is one of the most important carbon sink components, whose origins, distributions, and transport processes are of significance to carbon sink studies. Chromophoric dissolved organic matter (CDOM) can be utilized to express the composition and structural properties of DOM. In this paper, water samples were collected monthly from Xueyu Cave in a karst underground river from both inside and outside the cave.
View Article and Find Full Text PDFSince resistant dissolved organic matter (RDOM) plays a critically important role in a karst carbon sink, one of the most important continental carbon sinks, research focusing on the origination, transportation, and translation of RDOM in a karst water system is important. Currently, 3D-fluorescence EEMs are used to detect the composition and origination of chromophoric dissolved organic matter (CDOM), an important part of RDOM. This is a very fast and efficient method for CDOM analysis.
View Article and Find Full Text PDFIn this research, the bacterial community compositions of underground water in a tourist and pristine cave were studied. Xueyu Cave and Shuiming Cave are tourist and pristine caves, respectively, in the same karst cave system located in Chongqing, southwest China. To understand the impact of tourism on bacterial community compositions in underground water that flows through the caves, filtered materials from water were collected, and 16S rDNA gene sequences were obtained by high-throughput sequencing.
View Article and Find Full Text PDFIn a karst groundwater system, it develops complex multiple flows because of its special geological structure and unique physical patterns of aquifers. In order to investigate the characteristics and transport patterns of ammonia, nitrite and nitrate in epikarst water and subterranean stream, the water samples were collected monthly in a fast-urbanizing karst region. The results showed distinctive characteristics of three forms of inorganic nitrogen.
View Article and Find Full Text PDFMicrobial contamination in karst groundwater continually increases and tracing the source researches has become a hot topic for international researchers. In this study, Laolongdong underground river at Nanshan, Chongqing was chosen as an example to adopt filter membrane methods to monitor the fecal microbial contaminations including the total bacterial concentration (TB), the total E. coli concentration (TE), the total fecal coliform (FC) and the total fecal Streptocoocci (FS).
View Article and Find Full Text PDFIn order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors.
View Article and Find Full Text PDFHuan Jing Ke Xue
October 2012
Storm periods are the crucial stage to reveal input and outlet of material and energy in groundwater system. Jiangjia spring, the outlet of Qingmuguan groundwater system, was taken as an example. Distribution of suspended particle in the Jiangjia spring was continuously monitored.
View Article and Find Full Text PDFIn order to thoroughly reveal the karst groundwater system in response to the external environment, multi-index high-resolution auto-monitoring instruments were used to research the hydrogeochemistry variations of Qingmuguan subterranean stream. The monitoring indicators were pH value, electrical conductivity (EC), water level, rainfall and NO3-. In the observed 6 times rainfall events, the pH value was mainly controlled by acid rain and EC was impacted by the rain chemistry, physical dilution effect of rainfall and agricultural wastewater.
View Article and Find Full Text PDFGroundwater in Qingmuguan underground river was monitored using hydro-chemical and 15N isotope techniques to investigate temporal and spatial variations of nitrate-nitrogen and its possible sources from October, 2007 to October, 2008. The results show that nitrate concentrations are 3.20 mg/L of the inlet (D1) and 20.
View Article and Find Full Text PDFHydrologic process, turbidity, suspended particles matters (SPM), major cations and TOC concentrations during two storm events in late April 2008 were monitored at Jiangjia Spring which is the outlet of Qingmu Guan underground river system. Scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) analyses of SPM were also performed in order to investigate the transport characteristics of substances, such as SPM, turbidity and major cations in the underground river of typical karst watershed. The results show that at a single and well-developed karst conduit of Jiangjia Spring, discharge, turbidity, and concentrations of SPM, major cations and TOC respond promptly to the rainfall.
View Article and Find Full Text PDF