Publications by authors named "Qiufan Wang"

Electrochemical activation techniques and the use of multi-shell structured materials are effective strategies to enhance the electrochemical performance of rechargeable aqueous zinc-ion capacitors (ZICs). In this study, we successfully synthesized spherical NiMn-MOFs a solvothermal method and used them as templates to prepare Ni/MnO@C nanospheres with different core-shell structures by adjusting the heating rate under an Ar atmosphere. The multi-shelled structure provides more active sites and alleviates structural strain associated with repeated Zn insertion/extraction processes.

View Article and Find Full Text PDF

Rechargeable aqueous zinc-ion batteries (ZIBs) have attracted considerable attention for energy storage owing to their environmental friendliness and high safety. However, the adverse side reactions and unsatisfactory cycle life brought by Zn-metal anodes limit their large applications. Herein, CuO/CuS (CSO) heterostructured hollow nanospheres is proposed as an attractive conversion-type Zn-metal-free anode for "rocking-chair" ZIBs.

View Article and Find Full Text PDF

The development of a high specific capacity and stable vanadium-based cathode material is very attractive for aqueous zinc-ion batteries (ZIBs). Herein, an electrochemically oxidized cathode is fabricated based on a VO@MXene cathode for Zn-ion storage. VO@MXene undergoes a phase transition to Zn(OH)VO·2HO and ZnVO on the first charge, thus allowing for the subsequent insertion/de-insertion of zinc ions, which can be regulated by the amount of HO in the electrolyte.

View Article and Find Full Text PDF

Ammonium ions feature a light molar mass and small hydrated radius, and the interesting interaction between NH and host materials has attracted widespread attention in aqueous energy storage, while few studies focus on high-performance NH storage anodes. Herein, we present a high-performance inset-type anode for aqueous ammonium-ion batteries (AIBs) based on BiSeO nanosheets. A reversible NH/H co-intercalation/deintercalation accompanied by hydrogen bond formation/breaking and a conversion reaction mechanism in layered BiSeO is proposed according to characterizations.

View Article and Find Full Text PDF

Zinc-ion batteries (ZIBs) have attracted an increasing attention as a potential low-cost, environmentally friendliness, and high-safety energy storage system. Among them, transition metal vanadates with high oxidation state vanadium have great potential in ZIBs cathode research due to their high theoretical capacity. However, many vanadate particles still inevitably suffer from low ion mobility, low electrical conductivity and stability.

View Article and Find Full Text PDF

In situ electrochemical activation brings unexpected electrochemical performance improvements to electrode materials, while the mechanism behind is still needed to study deeply. Herein, an in situ electrochemically approach is developed for the activation of heterointerface MnO /Co O by inducing Mn-defect, wherein the Mn defects are formed through a charge process that converts the MnO with poor electrochemical activities toward Zn into high electrochemically active cathode for aqueous zinc-ion batteries (ZIBs). Guided by the coupling engineering strategy, the heterointerface cathode exhibits an intercalation/conversion dual-mechanism without structural collapse during storage/release of Zn .

View Article and Find Full Text PDF

Herein, for the first time, a pre-intercalated non-metal ion (NH ) with rich oxygen vacancies stabilized tunnel WO is proposed as a new intercalation anode to construct Zn-metal-free rocking-chair ZIBs. With the ethylene glycol additive in the aqueous electrolyte, the Zn solvation structure can be regulated and the side reaction of hydrogen evolution can also be suppressed. Owing to the integrated synergetic modification, a high-rate and ultra-stable aqueous Zn-(NH ) WO battery can be constructed, which exhibits an improved specific capacity (153 mAh g at 0.

View Article and Find Full Text PDF

The design and synthesis of hollow and porous nanostructured electrode materials is an effective strategy to improve the electrochemical performance of lithium-ion batteries and the hydrogen evolution reaction (HER). Herein, we synthesize hollow and porous Co@CoO nanoparticles embedded in N-doped CNTs (N-CNTs) with rich surface defects through a two-step calcination strategy. The formation mechanism is explored.

View Article and Find Full Text PDF

Cobalt sulfide (CoS) is a promising battery-type material for electrochemical energy storage. However, the poor conductivity and slow charge transfer kinetics as well as the deficiency of electrochemically active sites seriously limit their applications. Herein, a class of the P-doping induced hexagonal CoS nanosheets with S defects (P-CoS) derived from Co-based metal organic frameworks (MOFs) supported on carbon nanotube film (CNT) is designed and prepared.

View Article and Find Full Text PDF

Transition metal sulfides are promising battery-type materials for electrochemical energy storage and a great electrocatalyst for oxygen evolution reaction (OER). However, the poor conductivity and sluggish reaction kinetic as well as the deficiency of electrochemically active sites hinder the practical application of FeS. Herein, we design FeS porous nanoparticles with surface phosphate ions and enriched sulfur-vacancies (P-FeS), which is reported as a new high-specific-capacity material for asymmetric supercapacitor.

View Article and Find Full Text PDF

Hollow/porous nanomaterials are widely applicable in various fields. The last few years have witnessed increasing interest in the nanoscale Kirkendall effect as a versatile route to fabricate hollow/porous nanostructures. The transformation of Cu-Co Prussian blue analogue (CuCo-PBA) and FeFe-PBA nanocubes into CuO/CoO and FeO nanoframes is based on two types of nanoscale Kirkendall effect, which are related to solid-solid interfacial oxidation and solid-gas interfacial reaction, respectively.

View Article and Find Full Text PDF

The rapid development of human-machine interfaces and artificial intelligence is dependent on flexible and wearable soft devices such as sensors and energy storage systems. One of the key factors for these devices is the design of a flexible electrode with high sensitivity, fast response time, and a wide working range. Here, we report the fabrication of strain sensors and all-solid-state flexible supercapacitors using Co@N-CNT/MXenes as an electrode material.

View Article and Find Full Text PDF

The manufacture of multifunctional and high-performance wearable supercapacitors (SCs) requires a new class of flexible electrodes with high conductivity, high mechanical stability, good water-proof ability and self-healable capability. Herein, we report a stretchable and self-healable SC based on a MoS2/PEDOT/CNT electrode. The specific capacitance of the SC could be retained up to 81.

View Article and Find Full Text PDF

Carbon nanotube (CNT) buckypapers, or films, have the potential for wide applications because of their unique properties. Neat buckypapers or pristine CNT (PCNT) films have relatively large elongation but low strength and low modulus due to the weak interaction between CNTs. Chemical modifications of PCNT films can significantly strengthen the interaction between CNTs, resulting in high strength and high modulus but usually accompanied by low elongation.

View Article and Find Full Text PDF

Conventional flexible supercapacitors can work under consecutive bending, folding and even twisting without performance degradation. Nevertheless, these devices can hardly be used under large tensile strain. Flexible stretchable and healable supercapacitors are highly desired due to their many potential applications in electric devices.

View Article and Find Full Text PDF

One-dimensional supercapacitors (SCs) are of great interest for future wearable electronics, but improvement in both high capacitance and high flexibility is still a challenge. Herein, we fabricate a high performance yarn asymmetric SC (ASC) using in situ prepared CuCoO nanowires and polypyrrole (PPy) nanoparticles on the surface of a two-ply carbon nanotube (CNT) yarn. The parallel-shaped yarn ASC not only shows outstanding redox pseudocapacitance, including a high areal capacitance (59.

View Article and Find Full Text PDF

Methoxychlor is primarily used as an insecticide and it is widely present in the environment. The objective of the present study was to investigate the direct effects of methoxychlor and its metabolite hydroxychlor (HPTE) on rat neurosteroidogenic 3α-hydroxysteroid dehydrogenase (AKR1C14) and retinol dehydrogenase 2 (RDH2) activities. Rat AKR1C14 and RDH2 were cloned and expressed in COS-1 cells, and the effects of methoxychlor and HPTE on these enzymes were measured.

View Article and Find Full Text PDF

In this work, hollow RuO2 nanotube arrays were successfully grown on carbon cloth by using a facile two-step method to fabricate a binder-free electrode. The well-aligned electrode displays excellent electrochemical performance. By using RuO2 hollow nanotube arrays as the positive electrode and Fe2O3 as the negative electrode, a flexible solid-state asymmetric supercapacitor (ASC) has been fabricated which exhibited excellent electrochemical performance, such as a high capacitance of 4.

View Article and Find Full Text PDF

Taxifolin is a flavonoid in food plants. Kidney 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) is an NAD-dependent oxidase that inactivates glucocorticoid cortisol (human) or corticosterone (rodents) into biologically inert 11 keto glucocorticoids. The present study investigated the effects of taxifolin on rat and human kidney microsomal 11β-HSD2.

View Article and Find Full Text PDF

Electrochemical conversion reactions of metal oxides provide a new avenue to build high capacity anodes for sodium-ion batteries. However, the poor rate performance and cyclability of these conversion anodes remain a significant challenge for Na-ion battery applications because most of the conversion anodes suffer from sluggish kinetics and irreversible structural change during cycles. In this paper, we report an FeO single crystallites/reduced graphene oxide composite (FeO/rGO), where the FeO single crystallites with a particle size of ∼300 nm were uniformly anchored on the rGO nanosheets, which provide a highly conductive framework to facilitate electron transport and a flexible matrix to buffer the volume change of the material during cycling.

View Article and Find Full Text PDF

Fetal exposure to di-n-butyl phthalate (DBP) causes the adult disease such as lower testosterone production and infertility. However, the mechanism is still unknown. The objective of the present study is to determine how DBP affects the involution of fetal Leydig cells during the neonatal period and how this event causes the delayed development of the adult Leydig cells during puberty.

View Article and Find Full Text PDF

Flexible threadlike supercapacitors with improved performance are needed for many wearable electronics applications. Here, we report a high performance flexible asymmetric all-solid-state threadlike supercapacitor with a NiCo Se positive electrode and a NiCo O @PPy (PPy: polypyrrole) negative electrode. The as-prepared electrodes display outstanding volume specific capacitance (14.

View Article and Find Full Text PDF

Continuity, real-time, and accuracy are the key technical indexes of evaluating comprehensive performance of a strapdown inertial navigation system (SINS). However, Schuler, Foucault, and Earth periodic oscillation errors significantly cut down the real-time accuracy of SINS. A method for oscillation error restriction of SINS based on forecasted time series is proposed by analyzing the characteristics of periodic oscillation errors.

View Article and Find Full Text PDF

To solve the reduced output voltage caused by the high lithium redox potential of Co3O4 when applied as an anode material in full cells, an effective strategy is to partially replace Co by Mn to form MnCo2O4 without changing the original crystal structure. Herein, 3D hierarchical MnCo2O4 nanosheets arrays grown via a hydrothermal method on carbon cloths, as binder-free anodes for lithium-ion batteries, exhibit a high areal capacity of 3.0 mA h cm(-2) at a current density of 800 μA cm(-2), excellent cycling stability, good rate performances and a discharge voltage plateau of 0.

View Article and Find Full Text PDF

Integrated nanodevices with the capability of storing energy are widely applicable and have thus been studied extensively. To meet the demand for flexible integrated devices, all-solid-state asymmetric supercapacitors that simultaneously realize energy storage and optoelectronic detection were fabricated by growing Co3 O4 nanowires on nickel fibers, thus giving the positive electrode, and employing graphene as both the negative electrode and light-sensitive material. The as-assembled integrated systems were characterized by an improved energy storage, enhanced power density (at least by 1860 % enhanced) by improving the potential window from 0-0.

View Article and Find Full Text PDF