Publications by authors named "Qiubo Lei"

Human stem cell-derived cardiomyocytes provide new models for studying the ion channel pharmacology of human cardiac cells for both drug discovery and safety pharmacology purposes. However, detailed pharmacological characterization of ion channels in stem cell-derived cardiomyocytes is lacking. Therefore, we used patch-clamp electrophysiology to perform a pharmacological survey of the L-type Ca²⁺ channel in induced pluripotent and embryonic stem cell-derived cardiomyocytes and compared the results with native guinea pig ventricular cells.

View Article and Find Full Text PDF

During neural tube development, Shh signaling through Gli transcription factors is necessary to establish five distinct ventral progenitor domains that give rise to unique classes of neurons and glia that arise in specific positions along the dorsoventral axis. These cells are generated from progenitors that display distinct transcription factor gene expression profiles in specific domains in the ventricular zone. However, the molecular genetic mechanisms that control the differential spatiotemporal transcriptional responses of progenitor target genes to graded Shh-Gli signaling remain unclear.

View Article and Find Full Text PDF

The deployment of morphogen gradients is a core strategy to establish cell diversity in developing tissues, but little is known about how small differences in the concentration of extracellular signals are translated into robust patterning output in responding cells. We have examined the activity of homeodomain proteins, which are presumed to operate downstream of graded Shh signaling in neural patterning, and describe a feedback circuit between the Shh pathway and homeodomain transcription factors that establishes non-graded regulation of Shh signaling activity. Nkx2 proteins intrinsically strengthen Shh responses in a feed-forward amplification and are required for ventral floor plate and p3 progenitor fates.

View Article and Find Full Text PDF

Shh-Gli signaling controls cell fates in the developing ventral neural tube by regulating the patterned expression of transcription factors in neural progenitors. However, the molecular mechanisms that limit target gene responses to specific domains are unclear. Here, we show that Wnt pathway inhibitors regulate the threshold response of a ventral Shh target gene, Nkx2.

View Article and Find Full Text PDF

Background potassium channels determine membrane potential and input resistance and serve as prominent effectors for modulatory regulation of cellular excitability. TREK-1 is a two-pore domain background K+ channel (KCNK2, K2P2.1) that is sensitive to a variety of physicochemical and humoral factors.

View Article and Find Full Text PDF

General anesthetics have been a mainstay of surgical practice for more than 150 years, but the mechanisms by which they mediate their important clinical actions remain unclear. Ion channels represent important anesthetic targets, and, although GABA(A) receptors have emerged as major contributors to sedative, immobilizing, and hypnotic effects of intravenous anesthetics, a role for those receptors is less certain in the case of inhalational anesthetics. The neuronal hyperpolarization-activated pacemaker current (Ih) is essential for oscillatory and integrative properties in numerous cell types.

View Article and Find Full Text PDF

The three vertebrate Gli proteins play a central role in mediating Hedgehog (Hh)-dependent cell fate specification in the developing spinal cord; however, their individual contributions to this process have not been fully characterized. In this paper, we have addressed this issue by examining patterning in the spinal cord of Gli2;Gli3 double mutant embryos, and in chick embryos transfected with dominant activator forms of Gli2 and Gli3. In double homozygotes, Gli1 is also not expressed; thus, all Gli protein activities are absent in these mice.

View Article and Find Full Text PDF

Neuronal G protein-coupled inwardly-rectifying potassium channels (GIRKs, Kir3.x) can be activated or inhibited by distinct classes of receptors (Galphai/o and Galphaq/11-coupled, respectively), providing dynamic regulation of neuronal excitability. In this mini-review, we highlight findings from our laboratory in which we used a mammalian heterologous expression system to address mechanisms of GIRK channel regulation by Galpha and Gbetagamma subunits.

View Article and Find Full Text PDF

Leak K+ currents contribute to the resting membrane potential and are important for modulation of neuronal excitability. Within the past few years, an entire family of genes has been described whose members form leak K+ channels, insofar as they generate potassium-selective currents with little voltage- and time-dependence. They are often referred to as "two-pore-domain" channels because of their predicted topology, which includes two pore-forming regions in each subunit.

View Article and Find Full Text PDF