Publications by authors named "Qiu-ya Gu"

To obtain native strains resistant to butanol toxicity, a new isolating method and serial enrichment was used in this study. With this effort, mutant strain SE36 was obtained, which could withstand 35g/L (compared to 20g/L of the wild-type strain) butanol challenge. Based on 16s rDNA comparison, the mutant strain was identified as Clostridium acetobutylicum.

View Article and Find Full Text PDF

The zygomycete fungus Blakeslea trispora is usually used as a natural source of lycopene and β-carotene. In this study, the B. trispora (-) strain, a major mating type for lycopene production, was treated with N(+) ion implantation and N-methyl-N'-nitro-N-nitrosoguanidine (NTG), and further isolated on the screening plates supplemented with lovastatin and crude extracts of trisporic acid (CTA).

View Article and Find Full Text PDF

In order to obtain mutant strains showing higher solvent tolerance and butanol production than those of wild-type strains, the butanol-producing strain Clostridium beijerinckii L175 was subjected to mutagenesis using a combined method of low-energy ion beam implantation and N-methyl-N-nitro-N-nitrosoguanidine induction. With this effort, mutant strain MUT3 was isolated. When it was used for butanol fermentation in P2 medium, the production of butanol was 15.

View Article and Find Full Text PDF

To improve butanol tolerance and production in Clostridium acetobutylicum, a novel approach was developed in this study, which was called artificial simulation of bio-evolution (ASBE) based on the evolutionary dynamics and natural selection. Through repetitive evolutionary domestications, a butanol-tolerant strain C. acetobutylicum T64 was obtained, which could withstand 4% (v/v) (compared to 2% of the wild-type) butanol and was accompanied by the increase of butanol production from 12.

View Article and Find Full Text PDF

As a promising alternative biofuel, biobutanol can be produced through acetone/butanol/ethanol (ABE) fermentation. Currently, ABE fermentation is still a small-scale industry due to its low production and high input cost. Moreover, butanol toxicity to the Clostridium fermentation host limits the accumulation of butanol in the fermentation broth.

View Article and Find Full Text PDF