A method to measure the superficial velocity of the water phase in gas-water flow using an electromagnetic flowmeter (EMF) and rotating electric field conductance sensors (REFCSs) is introduced in this paper. An electromagnetic flowmeter instrument factor model is built and the correlation between electromagnetic flowmeter output and gas holdup in different flow patterns are explored through vertical upward gas-water flow dynamic experiments in a pipe with an inner diameter (ID) of 20 mm. Water superficial velocity is predicted based on pattern identification among bubble, churn, and slug flows.
View Article and Find Full Text PDFIn the process of production logging to evaluate fluid flow inside pipe, logging tools that force all flow to pass through a small measuring pipe are commonly utilized for measuring mixture density. For these logging tools, studying the fluid flow phenomenon inside the small diameter pipe and improving the prediction accuracy of pressure drop are beneficial to accurately measure mixture density. In this paper, a pressure drop prediction system is designed based on a combination of an eight-electrode rotating electric field conductance sensor (REFCS), plug-in cross-correlation conductance sensor, and differential pressure sensor.
View Article and Find Full Text PDF