Publications by authors named "Qiu-Yan Zhu"

Background: Astragalus and Panax notoginseng are significant traditional Chinese medicines for treating ischemic stroke, with astragaloside IV (AST IV) and Panax notoginseng saponins (PNS) being the major effective compounds, respectively. These compounds can also be used in combination. We have previously shown that AST IV and PNS have an antagonistic effect on cerebral ischemia/reperfusion (I/R) injury, and the combination of these two drugs can elevate this effect; unfortunately, AST IV and PNS cannot easily enter the brain tissues through the blood brain barrier (BBB).

View Article and Find Full Text PDF

Various sensing platforms based on molecular or nanosystems are widely exploited through molecular diversity and specific recognition. However, it is extremely challenging to develop systems with tunable sensing ability and utilize the systems as information carriers/covers for communication and safety. Herein, DNA nanosensing systems based on cobalt oxyhydroxide (CoOOH) nanosheets were constructed for tunable detection and valence distinction of metal ions, molecular crypto-steganography, and information coding.

View Article and Find Full Text PDF

Tumorigenesis, metastasis, and the recurrence of cancer, which may result from the abnormal presence or activation of cancer stem cells (CSCs), are involved in disorders of exchanged matter (biomarkers), energy and information in living organisms. Rapid and sensitive detection and imaging of CSC biomarkers (such as CD133) are helpful for early diagnosis and therapeutic evaluation of tumors. Recently, a preliminary exploration of a few affinity molecules (like peptide-based probes) has just begun for chemical measurements and imaging of CSC biomarker CD133.

View Article and Find Full Text PDF

Inspired by information processing and communication of life based on complex molecular interactions, some artificial (bio)chemical systems have been developed for applications in molecular information processing or chemo/biosensing and imaging. However, little attention has been paid to simultaneously and comprehensively utilize the information computing, encoding, and molecular recognition capabilities of molecular-level systems (such as DNA-based systems) for multifunctional applications. Herein, a graphene-based steganographically aptasensing system was constructed for multifunctional application, which relies on specific molecular recognition and information encoding abilities of DNA aptamers ( Aeromonas hydrophila and Edwardsiella tarda-binding aptamers as models) and the selective adsorption and fluorescence quenching capacities of graphene oxide (GO).

View Article and Find Full Text PDF

Considerable interest has been attracted in oleanolic acid and its analogues because of their hypoglycemic activity. In this study, a series of novel oleanolic acid analogues against α-glucosidase were synthesized and their biological activities were evaluated in vitro and in vivo. In vitro α-glucosidase inhibition activity results indicated that most of the designed analogues exhibited prominent inhibition activities, especially compounds 10, 15, 16 and 26 which with the IC values of 0.

View Article and Find Full Text PDF

Sensing of pyrophosphate (PPi) is helpful to better understand many life processes and diagnose various early-stage diseases. However, many traditional reported methods based on artificial receptors for sensing of PPi exhibit some disadvantages including difficulties in designing appropriate binding sites and complicated multi-step assembly/functionalization. Thus, it is significantly important and a big challenge to know how to use a simple molecular self-assembly or an interaction system to solve the above-mentioned limits to achieve the quantitative analysis of specific substances in the system.

View Article and Find Full Text PDF

Due to rapid change in information technology, many consumer electronics become electronic waste which is the fastest-growing pollution problems worldwide. In fact, many discarded electronics with prefabricated micro/nanostructures may provide a good basis to fulfill special needs of other fields, such as tissue engineering, biosensors, and energy. Herein, to take waste optical discs as an example, we demonstrate that discarded electronics can be directly repurposed as highly anisotropic platforms for in vitro investigation of cell behaviors, such as cell adhesion, cell alignment, and cell-cell interactions.

View Article and Find Full Text PDF

Patterning graphene allows to precisely tune its properties to manufacture flexible functional materials or miniaturized devices for electronic and biomedical applications. However, conventional lithographic techniques are cumbersome for scalable production of time- and cost-effective graphene patterns, thus greatly impeding their practical applications. Here, we present a simple scalable fabrication of wafer-scale three-dimensional (3D) graphene micropatterns by direct laser tuning graphene oxide reduction and expansion using a LightScribe DVD writer.

View Article and Find Full Text PDF

The most serious and yet unsolved problems of molecular logic computing consist in how to connect molecular events in complex systems into a usable device with specific functions and how to selectively control branchy logic processes from the cascading logic systems. This report demonstrates that a Boolean logic tree is utilized to organize and connect "plug and play" chemical events DNA, nanomaterials, organic dye, biomolecule, and denaturant for developing the dual-signal electrochemical evolution aptasensor system with good resettability for amplification detection of thrombin, controllable and selectable three-state logic computation, and keypad lock security operation. The aptasensor system combines the merits of DNA-functionalized nanoamplification architecture and simple dual-signal electroactive dye brilliant cresyl blue for sensitive and selective detection of thrombin with a wide linear response range of 0.

View Article and Find Full Text PDF

The aim of the present study was to investigate the effects of 2,3,4',5-tetrahydroxystilbene-2-O-beta-D-glucoside, an active component extracted from Polygonum multiflorum, on pressure overload-induced cardiac remodeling in rats. A rat model with cardiac remodeling was induced by abdominal aortic banding. 2,3,4',5-Tetrahydroxystilbene-2-O-beta-D-glucoside (30, 60, 120 mg/kg/day) was administered 3 days after abdominal aortic banding and continued for 30 days.

View Article and Find Full Text PDF

2,3,4',5-tetrahydroxystilbene-2-0-β-D glucoside (TSG) has been recognized to suppress the proliferation of vascular smooth muscle cells (VSMCs). The aim of the present study was to determine whether TSG inhibits neointimal hyperplasia in a rat carotid arterial balloon injury model. Balloon injury was induced in the left common carotid artery of rats.

View Article and Find Full Text PDF

To investigate the effects of cold on blood pressure, serum endothelin-1 content, serum nitric oxide content, and morbidity of cerebral infarction, as well as assess the therapeutic effect of nimodipine. A total of 200 rats were initially assigned to a normal group (n = 10), sham group (n = 10), and carotid atherosclerosis group (n = 180), and subsequently the animals in the carotid atherosclerosis group were randomly assigned to three groups: non-cold (n = 59), cold treatment (n = 58), and nimodipine (n = 58). Rats in the cold and nimodipine groups experienced an artificial cold wave.

View Article and Find Full Text PDF