Long period fiber gratings (LPFGs) have special advantages in the detection of salt concentrations due to small volume, corrosion resistance and immunity to electromagnetic interference. However, it is very difficult to distinguish low-concentration salt solutions with usual LPFGs owing to the poor sensitivity. In this paper, the detection capability of the LPFG to low-concentration salt solutions was significantly improved by assembling salt-containing poly (diallyldimethylammonium chloride) (PDDA) and salt-containing poly (sodium-p-styrenesulfonate) (PSS).
View Article and Find Full Text PDFAn extremely sensitive multi-order mode refractive index (RI) sensor was fabricated by coupling titanium dioxide nanograss film coated FTO conductive glass with Kretschmann prism. Both calculation and experimental studies were carried out. Theoretical analysis by employing resonant waveguide modes indicated that the maximum sensitivity could be achieved when the mode worked at the weakly-bounded condition.
View Article and Find Full Text PDFWe propose a novel, highly sensitive refractive index (RI) sensor by means of combining the Kretschmann prism with a TiO nanowire array and do not use a metallic layer in the Kretschmann configuration. Its RI sensing performance was investigated through measuring different concentrations of sodium chloride solution. Experimental results showed that, with increasing RI of liquid, the resonant wavelength in the reflectance spectrum redshifted gradually in the visible light range.
View Article and Find Full Text PDFThe response of a novel long-period fiber grating (LPFG) with a period of 180 µm to a surrounding refractive index (RI) was investigated. The results displayed that, with the increase in RI of the surrounding media of cladding glass in the grating region, the resonant peak located at 1336.4 nm in the transmission spectrum gradually shifts towards a shorter wavelength, while the resonant peak located at 1618 nm gradually shifted towards a longer wavelength.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
January 2013
An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity.
View Article and Find Full Text PDFIn this paper, a novel TiO(2) nanoparticle thin film coated optical fiber Fabry-Perot (F-P) sensor had been developed for refractive index (RI) sensing by monitoring the shifts of the fringe contrast in the reflectance spectra. Using in situ liquid phase deposition approach, the TiO(2) nanoparticle thin film could be formed on the fiber surface in a controlled fashion. The optical properties of as-prepared F-P sensors were investigated both theoretically and experimentally.
View Article and Find Full Text PDF