Contrast-enhanced ultrasound (CEUS) is a new form of ultrasound (US) that can dynamically display microvessels in a highly sensitive manner. The purpose of this study was to investigate the efficacy of CEUS for characterizing testicular lesions in comparison with conventional US. Forty-seven patients with testicular lesions were enrolled.
View Article and Find Full Text PDFInt J Clin Exp Med
November 2015
Bile duct hamartomas (BHs), also called von Meyenburg complex (VMC), are benign biliary malformations that originate from disorganization of the small intrahepatic bile ducts. This disorganization is often associated with the abnormal involution of embryonic ductal end plates in the liver. This is clinically significant, as the development of BHs can cause diagnostic confusion with liver metastases and small hepatocellular carcinoma (SHCC).
View Article and Find Full Text PDFPurpose: To evaluate diagnostic performance of acoustic radiation force impulse (ARFI) technology for solid breast masses with different sizes and determine which features are most efficient.
Materials And Methods: 271 solid breast masses in 242 women were examined with ARFI, and their shear wave velocities (SWVs), Virtual Touch tissue imaging (VTI) patterns, and area ratios (ARs) were measured and compared with their histopathological outcomes. Receiver operating characteristic curves (ROC) were calculated to assess diagnostic performance of ARFI for small masses (6-14 mm) and big masses (15-30 mm).
The aim of the present study was to identify effective regions of interest (ROIs) and parameters for the quantitative analysis of contrast-enhanced ultrasound (CEUS) to evaluate the anti-angiogenic effects of bevacizumab. Thirty mice were subcutaneously injected with CT26 cells and randomly divided into a bevacizumab‑treated (Bev) group and a control group (normal saline-treated). CEUS and quantitative analysis were performed on days 7, 11, 14 and 21 following tumor establishment.
View Article and Find Full Text PDFGene therapy is a potentially viable approach for treating hormone-refractory prostate cancer (HRPC), it requires efficient delivery systems and a target gene. Inducing carcinoma cell apoptosis by inhibition of heat shock protein 70 (HSP70) overexpression has been emerging as an attractive strategy for cancer therapy. In our study, the high tumor-specificity of human telomerase reverse transcriptase (HTERT) expression prompted the use of an HTERT/cytomegalovirus (CMV) chimeric promoter to drive HSP70-ShRNA expression to induce HRPC 22RV1 cell apoptosis.
View Article and Find Full Text PDFA potentially viable approach for treating late-stage prostate cancer is gene therapy. Successful gene therapy requires safe and efficient delivery systems. In this study, we report the efficient delivery of small interfering RNA (siRNA) via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) triblock copolymers.
View Article and Find Full Text PDFBackground: A novel small interfering RNA (siRNA) delivery method based on the combined use of nanoparticles (NPs) with ultrasound (US) and/or microbubbles (MBs) was introduced in the present study. We investigated the efficacy and safety of US and/or MBs-enhanced delivery of monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly l-lysine (mPEG-PLGA-PLL) NPs loading platelet-derived growth factor BB (PDGF-BB) siRNA to rat retinal pigment epithelium (RPE)-J cells.
Methods: The effect of US and/or MBs on the delivery of NPs containing Cy3-labeled siRNA was evaluated by fluorescence microscopy and flow cytometry.