Publications by authors named "Qiu-Sheng Liu"

The shedding kinematics of water droplets in a condensation environment when exposed to aerodynamic forces in microgravity was studied. Understanding the shedding of droplets from a surface is a critical part of the dropwise condensation process for improving heat transfer. Because gravity as a droplet removal technique is not available in space, the use of airflow to shed droplets is considered for condensing heat exchangers in environmental control and life support systems.

View Article and Find Full Text PDF

The gravity-driven flow of a thin liquid film down a uniformly heated vertical fiber is considered. This is an unstable open flow that exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the variation of surface tension induced by temperature disturbance at the interface. A linear stability analysis and a nonlinear simulation are performed to investigate the dynamic of axisymmetric disturbances.

View Article and Find Full Text PDF

Linear stability in Hagen-Poiseuille flow of a shear-thinning fluid is considered. The non-Newtonian viscosity is described by the Carreau rheological law. The effects of shear thinning on the stability are investigated using the energy method and the nonmodal stability theory.

View Article and Find Full Text PDF

The surface tension of molten tin has been determined by the sessile drop method at temperatures ranging from 523 to 1033 K and in the oxygen partial pressure (P(O(2))) range from 2.85 x 10(-19) to 8.56 x 10(-6) MPa, and its dependence on temperature and oxygen partial pressure has been analyzed.

View Article and Find Full Text PDF