Publications by authors named "Qiu Yanling"

The critical role of some RAB family members in oocyte meiosis has been extensively studied, but their role in oocyte aging remains poorly understood. Here, we report that the vesicle trafficking regulator, RAB9 GTPase, is essential for oocyte meiosis and aging in humans and mice. RAB9 was mainly located at the meiotic spindle periphery and cortex during oocyte meiosis.

View Article and Find Full Text PDF

Partial denitrification (PD) can supply essential nitrite (NO) and is supposed to promote the application of Anammox. However, PD-related research mainly involves sequencing batch reactors and activated sludge. Here, we proposed establishing PD in a continuous-flow submerged biofilm module (PD-BfM).

View Article and Find Full Text PDF

Organophosphate esters (OPEs) are a class of semi-volatile organic compounds frequently used to various products as flame retardants and plasticizers. As emerging pollutants, OPEs have attracted significant attention due to their potential impacts on human health and ecosystems. This study investigated the occurrence of OPEs in vehicle interior dust across 36 cities in China.

View Article and Find Full Text PDF

To explore the occurrence characteristics and health risk levels of the new pollutants organophosphate esters (OPEs) in tap water in Shanghai, based on the water supply areas of the Qingcaosha Reservoir, Chenhang Reservoir, Dongfeng Xisha Reservoir, and Upstream Huangpu River water sources, a total of 52 large shopping malls in Shanghai were selected as tap water sampling sites. Solid phase extraction and gas chromatography-triple quadrupole mass spectrometry were used to determine eight types of OPEs in tap water from shopping malls, including three types of chlorinated OPEs, two types of alkyl OPEs, and three types of aryl OPEs. On this basis, the health risk assessment of the substances with high detection frequency and concentration was carried out.

View Article and Find Full Text PDF
Article Synopsis
  • Hard carbon materials are effective anodes for sodium-ion batteries due to their cost-efficiency and high capacity, but they struggle with low initial efficiency and slow sodium transport due to electrolyte compatibility issues.
  • A new strategy using methyltriphenylphosphonium bromide (MTPPB) enhances the electrolyte by optimizing interfacial chemistry, leading to improved sodium storage and reduced resistance in the battery.
  • The hard carbon sodium cells achieve impressive performance metrics, including a 96.6% initial efficiency and long cycling life, suggesting that this electrolyte reconfiguration can significantly enhance the effectiveness of sodium-ion batteries.
View Article and Find Full Text PDF

Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified.

View Article and Find Full Text PDF

In Brief: The mechanism by which the NSUN2 mutation causes female infertility is still unclear. This study reveals the role and potential mechanism of NSUN2 in mouse oocyte maturation and early embryonic development, and provides a resource for elucidating female infertility with NSUN2 mutations.

Abstract: Biallelic variants in the NSUN2 gene cause a rare intellectual disability and female infertility in humans.

View Article and Find Full Text PDF

There are enormous economic benefits to conveniently increasing the selective recovery capacity of gold. Fe/Co-MOF@PDA/NdFeB double-network organogel (Fe/Co-MOF@PDA NH) is synthesized by aggregation assembly strategy. The package of PDA provides a large number of nitrogen-containing functional groups that can serve as adsorption sites for gold ions, resulting in a 21.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a new electrocatalytic water-splitting catalyst using a FeO-FeSe heterojunction with oxygen vacancies on reduced graphene oxide (rGO) through a simple hydrothermal method.
  • * The combination of different Fermi levels in FeO and FeSe creates a built-in electric field (BEF) that improves charge separation and enhances the catalyst's activity by optimizing hydrogen/oxygen intermediate adsorption.
  • * Experimental results show that this catalyst demonstrates impressive hydrogen and oxygen production with low overpotentials, and a water electrolyzer using it only requires 1.78 V to reach a current density of 100 mA⋅cm.
View Article and Find Full Text PDF

Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism.

View Article and Find Full Text PDF

Triphenyl phosphate (TPhP) and transition metal elements have been ubiquitously detected in the atmosphere, which can participate in atmospheric chemical reactions and induce damage to human health. Currently the understanding of TPhP degradation, transformation and cytotoxicity on atmospheric particles surface are still limited. Therefore, this study used laboratory simulation methods to investigate the influence of irradiation time, transition metal salts, relative humidity (RH) to TPhP degradation, transformation and relative cytotoxicity.

View Article and Find Full Text PDF

NaV(PO)F is recognized as a promising cathode for high energy density sodium-ion batteries due to its high average potential of ∼3.95 V (vs Na/Na). A high-voltage-resistant electrolyte is of high importance due to the long duration of 4.

View Article and Find Full Text PDF

The enhanced biological phosphorus removal (EBPR) process requires alternate anaerobic and aerobic conditions, which are regulated respectively by aeration off and on. Recently, in an ordinary EBPR reactor, an abnormal orthophosphate concentration (PO-P) decline in the anaerobic stage (namely non-aerated phosphorus uptake) aroused attention. It was not occasionally but occurred in each cycle and lasted for 101 d and shared about 16.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is a perfluoroalkyl and polyfluoroalkyl substance (PFAS) widely used in daily life. As its toxicity was confirmed, it has been gradually substituted by F-53B (chlorinated polyfluoroalkyl sulfonates, Cl-PFESAs) in China. PFOS exposure during prenatal development may hinder the development of preimplantation embryos, as indicated by recent epidemiological research and in vivo assays.

View Article and Find Full Text PDF

The response of anammox bacteria to hydroxylamine has not been well explained. Herein, hydroxylamine was long-term added as the sole substrate to marine anammox bacteria (MAB) in saline wastewater treatment for the first time. MAB could tolerate 5 mg/L hydroxylamine.

View Article and Find Full Text PDF

The ubiquitous occurrence of per- and polyfluoroalkyl substances (PFAS) and the detection of unexplained extractable organofluorine (EOF) in drinking water have raised growing concerns. A recent study reported the detection of inorganic fluorinated anions in German river systems, and therefore, in some samples, EOF may include some inorganic fluorinated anions. Thus, it might be more appropriate to use the term "extractable fluorine (EF) analysis" instead of the term EOF analysis.

View Article and Find Full Text PDF

Indoor dust is the main source of human exposure to brominated flame retardants (BFRs). In this study, in vitro colon-extended physiologically-based extraction test (CE-PBET) with Tenax as a sorptive sink was applied to evaluate the oral bioaccessibility of twenty-two polybrominated diphenyl ethers (PBDEs) and seven novel BFRs (NBFRs) via indoor dust ingestion. The mean bioaccessibilities of two NBFRs pentabromotoluene (PBT) and 1,2-Bis(2,4,6-tribromophenoxy) ethane (BTBPE) were first proposed, reaching 36.

View Article and Find Full Text PDF

Adjusting the electronic structure and intrinsic activity of the active site of the catalyst based on atomic implantation is the crucial to realizing efficient electrochemical water splitting in alkaline media. Thus, we introduce vanadium (V) atoms with abundant vacant d orbitals as dopants into nickel selenides (NiSe), which has abundant variable valence states, and successfully synthesise three-dimensional bi-functional catalysts self-supported on Ni foam (NF). The electron structure characterisation reveals that, compared with the pure NiSe phase, the oxidation states of Ni cations and electron concentration at the Se site in V-NiSe increase due to the V doping.

View Article and Find Full Text PDF

Black-crowned night heron (Nycticorax nycticorax) eggs have been identified as useful indicators for biomonitoring the environmental pollution in China. In this study, we investigated thirty eggs of black-crowned night heron collected from the upper Yangtze River (Changjiang) Basin, Southwest China, for the occurrence of legacy persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Our results showed a general presence of POPs in night heron eggs with OCPs being the dominant contaminants, having a geometric mean concentration of 22.

View Article and Find Full Text PDF

Designing heterojunction catalysts with energy effects at the interface, particularly combining the surface structure advantages of super-hydrophilic interfaces with the high activity advantages of bimetal synergistic optimisation, is the key to developing economical and efficient industrial electrocatalytic water-splitting catalysts. In this study, a coupled nanoflower-like NiFe(OH)/(Ni, Fe)Se heterostructure catalyst supported on Ni foam (NF) (NFSe@NFOH/NF) was designed and successfully prepared using hydrothermal and electrodeposition strategies. Owing to the electron interaction at the heterogeneous amorphous (NFOH)/crystalline (NFSe) interface and the bimetallic synergistic effect of Ni and Fe, the prepared NFSe@NFOH/NF exhibited excellent and stable oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalytic properties, with low overpotentials of 214/276 mV at 100 mA⋅cm and 262/340 mV at 500 mA⋅cm.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focused on how polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) accumulate in tissues of two snake species and a frog species found in China's Yangtze River Delta, revealing limited bioaccumulation data for NBFRs in wildlife.
  • - The findings showed that PBDE levels ranged from 4.4-250 ng/g lipid weight in snakes and 2.9-120 ng/g in frogs, with significant presence of BDE-209, BDE-154, and BDE-47 in PBDEs, while decabromodiphenylethane (DBDPE) was the primary NBFR.
View Article and Find Full Text PDF

Photo-Fenton technology integrated by photocatalysis and Fenton reaction is a favorable strategy for water remediation. Nevertheless, the development of visible-light-assisted efficient and recyclable photo-Fenton catalysts still faces challenges. This study successfully constructed a novel separable Z-scheme P-g-CN/FeOQDs/BiOI (PCN/FOQDs/BOI) heterojunction via in-situ deposition method.

View Article and Find Full Text PDF

The process performance of partial denitrification of a novel anaerobic fermentation integrated fixed-film activated sludge (IFAS-AFPD) of Enteromorpha was studied. The response surface method was used to determine the optimal reaction conditions, and the operation experiment was carried out under the optimal conditions. The results showed that the nitrogen removal effect was the best when the salinity was 12.

View Article and Find Full Text PDF

The combined denitrifying phosphorus removal (DPR) and Anammox process is expected to achieve advanced nutrient removal with low carbon consumption. However, exchanging ammonia/nitrate between them is one limitation. This study investigated the feasibility of conducting DPR in a biofilm reactor to solve that problem.

View Article and Find Full Text PDF

Background: High-temperature requirement protease A2 (HtrA2/Omi) is a mitochondrial chaperone that is highly conserved from bacteria to humans. It plays an important role in mitochondrial homeostasis and apoptosis. In this study, we investigated the role of HtrA2 in mouse oocyte maturation.

View Article and Find Full Text PDF