Background: Understanding the intricate tumor microenvironment (TME) is crucial for elucidating the mechanisms underlying the progression of cervical squamous cell carcinoma (CSCC) and its response to anti-PD-1 therapy.
Methods: In this study, we characterized 50,649 cells obtained from the CSCC for single-cell RNA sequencing and integrated bulk sequencing data from The Cancer Genome Atlas (TCGA) and clinical samples to explore their cell composition, metabolic processes, signaling pathways, specific transcription factors, lineage tracking and response to immunotherapy. In vivo experiments were performed to validate the function of key cell subsets.
Chemotherapy combined with checkpoint blockade antibodies targeting programmed cell death protein (PD-1) has achieved remarkable success in non-small cell lung cancer. However, few patients benefit from long-term treatment. Therefore, biomarkers capable of guiding the optimal therapeutic selection and reducing unnecessary toxicity are of pressing importance.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are distinct histological subtypes of esophageal cancer. The tumor microenvironment of each subtype significantly influences the efficacy of immunotherapy. However, the characteristics of the tumor microenvironments of both subtypes, as well as their specific impacts on immunotherapy outcomes, still require further elucidation.
View Article and Find Full Text PDFBackground: Anti-programmed cell death 1 (PD-1) antibody combined with chemotherapy simultaneously is regarded as the standard treatment for patients with advanced non-small cell lung cancer (NSCLC) by current clinical guidelines. Different immune statuses induced by chemotherapy considerably affect the synergistic effects of the chemo-anti-PD-1 combination. Therefore, it is necessary to determine the optimal timing of combination treatment administration.
View Article and Find Full Text PDFExamining tumor-associated macrophages in the immune microenvironment of non-small cell lung cancer (NSCLC) is essential for gaining an understanding of the genesis and development of NSCLC as well as for identifying key clinical therapeutic targets. Although previous studies have reported the diverse phenotypes and functions of macrophages in tumor tissues, thereby highlighting their significant role in the tumor microenvironment, the characteristic differences and correlations between tumor and peritumor tissue-derived macrophages that are necessary for an understanding of NSCLC progression remain unclear. Based on single-cell RNA sequencing, we generated a comprehensive dataset of transcriptomes from NSCLC tumor and peritumor tissues, thereby facilitating comprehensive analysis and providing significant insights.
View Article and Find Full Text PDFIdentifying tumor-relevant T cell subsets in the peripheral blood (PB) has become a potential strategy for cancer treatment. However, the subset of PB that could be used to treat cancer remains poorly defined. Here, we found that the CX3CR1 T cell subset in the blood of patients with lung cancer exhibited effector properties and had a higher TCR matching ratio with tumor-infiltrating lymphocytes (TILs) compared to CX3CR1 T cells, as determined by paired single-cell RNA and TCR sequencing.
View Article and Find Full Text PDFCisplatin-based chemotherapy is the current standard care for lung cancer patients; however, drug resistance frequently develops during treatment, thereby limiting therapeutic efficacy.The molecular mechanisms underlying cisplatin resistance remain elusive. In this study, we conducted an analysis of microarray data from the Gene Expression Omnibus (GEO) database under the accession numbers GSE21656, which encompassed expression profiling of cisplatin-resistant H460 (DDP-H460)and the parental cells (H460).
View Article and Find Full Text PDFWorld J Gastrointest Oncol
April 2024
Background: Metabolic reprogramming plays a key role in cancer progression and clinical outcomes; however, the patterns and primary regulators of metabolic reprogramming in colorectal cancer (CRC) are not well understood.
Aim: To explore the role of nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) in promoting progression of CRC.
Methods: We evaluated the expression and function of dysregulated and survival-related metabolic genes using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes.
Cancer Immunol Immunother
April 2024
Tumor-associated macrophages (TAMs) are abundant in tumors and interact with tumor cells, leading to the formation of an immunosuppressive microenvironment and tumor progression. Although many studies have explored the mechanisms underlying TAM polarization and its immunosuppressive functions, understanding of its progression remains limited. TAMs promote tumor progression by secreting cytokines, which subsequently recruit immunosuppressive cells to suppress the antitumor immunity.
View Article and Find Full Text PDFSignal Transduct Target Ther
April 2023
Background: Esophageal carcinoma is the highly lethal cancer in the world, predominantly in some areas of East Asia. We previously reported that overexpression of cytoskeleton regulator Wiskott-Aldrich syndrome protein and SCAR Homolog (WASH) associates with poor prognosis of patients with esophageal squamous cell carcinoma (ESCC). However, the molecular mechanism and clinical significance involved in WASH overexpression have not been fully elucidated.
View Article and Find Full Text PDFMelanoma-associated Ag (MAGE)-C2, an immunogenic cancer germline (testis) Ag, is highly expressed by various tumor cells, thymic medullary epithelial cells, and germ cells. In this study, we aimed to explore the immunologic properties of MAGE-C2-specific CD8 T cells and the relationship of its TCR β-chain V region (TCR vβ) subfamily distribution to prognosis of patients with esophageal cancer. PBMCs and tumor-infiltrating lymphocytes expanded by CD3/CD28 Dynabeads and MAGE-C2 peptides in vitro resulted in the induction of lysosome-associated membrane protein-1 (LAMP-1 or CD107a) on the cell surface and the production of IFN-γ by MAGE-C2-specific CD8 T cells.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2022
Chimeric antigen receptor (CAR) T cells remain unsatisfactory in treating solid tumors. The frequency of tumor-infiltrating T cells is closely related to the good prognosis of patients. Augmenting T cell accumulation in the tumor microenvironment is essential for tumor clearance.
View Article and Find Full Text PDFTherapies targeting programmed cell death protein 1 (PD-1) have gained great success in patients with multiple types of cancer. The regulatory mechanisms underlying PD-1 expression have been extensively explored. However, the impact of long noncoding RNAs on PD-1 expression remains elusive.
View Article and Find Full Text PDFBackground: Studies have shown that patients with lung adenocarcinoma exhibit a poor prognosis, and the overall effective rate of immunotherapy is relatively low. Previous studies reported on the BPIFB2 gene have shown that it participates in immune regulation in gastric cancer; however, the role and mechanisms of BPIFB2 in lung cancer remain unclear. The present study evaluated the mechanism of BPIFB2 in lung adenocarcinoma.
View Article and Find Full Text PDFThe abundance and type of immune cells in the tumor microenvironment (TME) significantly influence immunotherapy and tumor progression. However, the role of immune cells in the TME of gastric cancer (GC) is poorly understood. We studied the correlations, proportion, and infiltration of immune and stromal cells in GC tumors.
View Article and Find Full Text PDFBackground: Esophageal squamous cell carcinoma (ESCC) is the main pathological subtype of esophageal cancer with high incidence and mortality. Immune and stromal cells in the tumor microenvironment (TME) profoundly affect the development of ESCC.
Methods: In this study, we used the ESTIMATE algorithm to calculate the immune and stromal scores of ESCC samples in The Cancer Genome Atlas (TCGA) database.
Drug resistance remains the major obstacle limiting the effectiveness of chemotherapy for esophageal squamous cell carcinoma (ESCC)[1]. However, how stromal cells cooperate with immune cells to contribute to drug resistance is not yet fully understood. In this study, we observed that monocytic myeloid-derived suppressor cells (M-MDSCs) were correlated with cisplatin resistance in patients with ESCC.
View Article and Find Full Text PDFIn chimeric antigen receptor (CAR)-T cell therapy, the role and mechanism of indoleamine 2, 3 dioxygenase 1 (IDO1) in enhancing antitumor immunity require further study. IDO1 is one of the most important immunosuppressive proteins in esophageal squamous cell carcinoma (ESCC). However, the IDO1 inhibitor, epacadostat, has failed in phase III clinical trials; its limited capacity to inhibit IDO1 expression at tumor sites was regarded as a key reason for clinical failure.
View Article and Find Full Text PDFUrothelial bladder cancer (UBC) is the most common malignant tumor of the urinary system. Most patients do not benefit from treatment with immune checkpoint inhibitors, which are closely associated with immune profiling in the context of UBC. Therefore, we aimed to characterize the immune profile of UBC to identify different immune subtypes that may influence therapy choice.
View Article and Find Full Text PDFObjective: L1 cell adhesion molecule (L1CAM) exhibits oncogenic activity in tumors. However, the link between L1CAM and the tumor microenvironment remains poorly understood in patients with esophageal squamous cell carcinoma (ESCC). In this study, we investigated how L1CAM expression in ESCC affects the oncogenic characteristics of tumor cells and the tumor microenvironment.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2021
Glioma stem cells (GSCs) contribute to the malignant growth of glioma, but little is known about the interaction between GSCs and tumor microenvironment. Here, we found that intense infiltration of regulatory T cells (Tregs) facilitated the qualities of GSCs through TGF-β secretion that helped coordinately tumor growth. Mechanistic investigations indicated that TGF-β acted on cancer cells to induce the core cancer stem cell-related genes CD133, SOX2, NESTIN, MUSASHI1 and ALDH1A expression and spheres formation via NF-κB-IL6-STAT3 signaling pathway, resulting in the increased cancer stemness and tumorigenic potential.
View Article and Find Full Text PDFCancer Immunol Immunother
November 2020
Natural killer (NK) cells, a predominant innate lymphocyte subset, mediates eradicating malignant cells. Purinergic signaling by ectonucleotidase CD39 can suppress T-cell response in caner. However, the role of CD39 in NK cells has not been fully elucidated.
View Article and Find Full Text PDFGastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer.
View Article and Find Full Text PDF