In this paper, we focus on the real power sharing and frequency regulation of distributed generators in islanded microgrids with abnormal asynchronous stochastic cyber attacks, which is of great significance to the information security and stable operation of microgrids. Firstly, considering the possible cyber attacks in the communication network, a distributed non-fragile controller with coupled memory delay is proposed according to the nonperiodic sampled-data control. Then, the construction of delay-dependent two-sided looped-functional makes the Lyapunov-Krasovskii functional contain more delay and sampling information and relaxes constraints on free matrices.
View Article and Find Full Text PDFThis paper addresses fixed-time output synchronization problems for two types of complex dynamical networks with multi-weights (CDNMWs) by using two types of adaptive control methods. Firstly, complex dynamical networks with multiple state and output couplings are respectively presented. Secondly, several fixed-time output synchronization criteria for these two networks are formulated based on Lyapunov functional and inequality techniques.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2022
The precise temperature distribution measurement is crucial in many industrial fields, where ultrasonic tomography (UT) has broad application prospects and significance. In order to improve the resolution of reconstructed temperature distribution images and maintain high accuracy, a novel two-step reconstruction method is proposed in this article. First, the problem of solving the temperature distribution is converted to an optimization problem and then solved by an improved version of the equilibrium optimizer (IEO), in which a new nonlinear time strategy and novel population update rules are deployed.
View Article and Find Full Text PDFIn this work, a novel dynamic-memory event-triggered H load frequency control (LFC) approach for the power system is proposed considering the existence of hybrid attacks. A dynamic-memory event-triggered mechanism (DMETM) is first presented under denial-of-service (DoS) attacks to reduce the occupation of network communication bandwidth. Different from the existing event-triggered mechanisms (ETMs), the superiority of DMETM is that not only the past transmitted packets can be utilized but also the amount of utilized packets can be adjusted according to the state error of the power system.
View Article and Find Full Text PDFThis paper studies a class of multi-agent systems (MASs) subject to deception signal and communication interference. The objective of the present work is to establish a flexible and generalized distributed dynamic event-triggered control (DDETC) with impulsive signal to make the investigated MASs achieve secure consensus under redundant signal and communication interference. It is shown that Zeno behavior can be precluded with such a DDETC.
View Article and Find Full Text PDFThis paper investigates the problems of stability and stabilization for a networked control system (NCS) with additive time-varying delay components' controller. Firstly, stability of a NCS with additive time-varying delays is investigated. A novel approach with free parameters is proposed.
View Article and Find Full Text PDFThis paper presents a state of charge (SOC) estimation method based on fractional order sliding mode observer (SMO) for lithium-ion batteries. A fractional order RC equivalent circuit model (FORCECM) is firstly constructed to describe the charging and discharging dynamic characteristics of the battery. Then, based on the differential equations of the FORCECM, fractional order SMOs for SOC, polarization voltage and terminal voltage estimation are designed.
View Article and Find Full Text PDFIn this paper, a novel method is developed for delay-dependent finite-time boundedness of a class of Markovian switching neural networks with time-varying delays. New sufficient condition for stochastic boundness of Markovian jumping neural networks is presented and proved by an newly augmented stochastic Lyapunov-Krasovskii functional and novel activation function conditions, the state trajectory remains in a bounded region of the state space over a given finite-time interval. Finally, a numerical example is given to illustrate the efficiency and less conservative of the proposed method.
View Article and Find Full Text PDFThis paper investigates the problem of finite-time boundedness filtering for discrete-time Markovian jump system subject partly unknown transition probabilities. By using the multiple Lyapunov function approach, a novel sufficient condition for finite-time bounded of H∞ filtering is derived and the system trajectory stays within a prescribed bound during a specified time interval. Finally, an example is provided to illustrate the usefulness and effectiveness of the proposed method.
View Article and Find Full Text PDF