() is a zoonotic bacterial pathogen that causes chronic host infections. The eradication of brucellosis using antibiotic therapy is often incomplete or slow. In a mouse model, the predominance of alternatively activated macrophages (also known as M2) plays an essential role in sustaining chronic infection.
View Article and Find Full Text PDFMammalian GTPase-activating proteins (GAPs) can inhibit innate immunity signaling in a spatiotemporal fashion; however, the role of bacterial GAPs in mediating innate immunity remains unknown. In this study, we show that BspI, a type IV secretion system (T4SS) effector protein, containing a GAP domain at the C terminus, negatively regulates proinflammatory responses and host protection to infection in a mouse model. In macrophages, BspI inhibits the activation of inositol-requiring enzyme 1 (IRE1) kinase, but it does not inhibit activation of ATF6 and PERK.
View Article and Find Full Text PDFSec-O-glucosylhamaudol (SOG), an active flavonoid compound derived from the root of (Turcz. ex Ledeb.) Schischk.
View Article and Find Full Text PDFBrucellosis caused by bacteria of the genus of Brucella remains a major zoonosis in the wide world, which is an infectious disease with a severe economic impact on animal husbandry and public health. The genus of Brucella includes ten species and the most prevalent is Brucella melitensis. The diagnosis of Brucella melitensis ruminant brucellosis is based on bacteriological and immunological tests.
View Article and Find Full Text PDFInfluenza viruses continue evolving and have the ability to cause a global pandemic, so it is very important to elucidate its pathogenesis and find new treatment methods. In recent years, proteomics has made important contributions to describing the dynamic interaction between influenza viruses and their hosts, especially in posttranslational regulation of a variety of key biological processes. Protein posttranslational modifications (PTMs) increase the diversity of functionality of the organismal proteome and affect almost all aspects of pathogen biology, primarily by regulating the structure, function, and localization of the modified proteins.
View Article and Find Full Text PDFProgesterone has been recognized as essential for the establishment and maintenance of pregnancy, and is typically known as an immunosuppressive agent. However, its effects on mediating Brucella infection-induced inflammation have not been evaluated. Here we demonstrated that Brucella abortus infection inhibits progesterone levels in the pregnant mouse by suppressing the production of progesterone by placenta.
View Article and Find Full Text PDFBrucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high-mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in B. melitensis-infected pregnant mice model.
View Article and Find Full Text PDFBrucellosis is a worldwide zoonosis affecting animal and human health. Till now, there is no effective vaccine licensed for brucellosis in humans. Although M5, H38 and 45/20 vaccines were used to prevent animal brucellosis in the early stages, the currently used animal vaccines are S19, Rev.
View Article and Find Full Text PDFThe mammalian Sirt1 deacetylase is generally thought to be a nuclear protein, but some pilot studies have suggested that Sirt1 may also be involved in orchestrating nucleolar functions. Here, we show that nucleolar stress response is a ubiquitous cellular reaction that can be induced by different types of stress conditions, and Sirt1 is an endogenous suppressor of nucleolar stress response. Using stable isotope labeling by amino acids in cell culture approach, we have identified a physical interaction of between Sirt1 and the nucleolar protein nucleophosmin, and this protein-protein interaction appears to be necessary for Sirt1 inhibition on nucleolar stress, whereas the deacetylase activity of Sirt1 is not strictly required.
View Article and Find Full Text PDFOsteoclasts are multinucleated cells that originate from hemopoietic stem cells. Targeting over activated osteoclasts is thought to be an effective therapeutic approach to osteoporosis. In a previous study, we reported that Tatarinan O, a lignin-like compound, suppressed RANKL-induced osteoclastogenesis.
View Article and Find Full Text PDFBrucellosis is a debilitating febrile illness caused by an intracellular Brucella. The disease is distributed in humans and animals widely, especially in developing countries. Ten species are included in the genus Brucella nowadays; four species of them are pathogenic to humans, which make brucellosis a zoonosis with more than 500,000 new cases reported annually.
View Article and Find Full Text PDFCu-Zn superoxide dismutase (Cu-Zn SOD) is a periplasmic protein, and immunization of mice with recombinant Cu-Zn SOD protein confers protection against infection. However, the role of Cu-Zn SOD during the process of infection remains unknown. Here, we report that Cu-Zn SOD is secreted into culture medium and is translocated into host cells independent of type IV secretion systems (T4SS).
View Article and Find Full Text PDFOsteoclastogenesis is essential for bone remodeling and normal skeletal maintenance. Receptor activator of NF-κB ligand (RANKL) promotes osteoclast differentiation and function but requires costimulation of immunoreceptor tyrosine-based activation motif (ITAM)-coupled immunoreceptors. Triggering receptor expressed on myeloid cells-2 (TREM2) coupled to ITAM-adaptor protein DNAX activation protein 12kDA (DAP12) provides costimulation of intracellular calcium signaling during osteoclastogenesis.
View Article and Find Full Text PDFBackground: Hypertension is an increased risk of heart failure and acute myocardial infarction (MI). Tert-butylhydroquinone (tBHQ), as an antioxidant, shows multiple cardioprotective actions including the reduction in blood pressure. The aim of this study was to investigate whether and how tBHQ improves heart functions in rats.
View Article and Find Full Text PDFAims: Proteasome-linked oxidative stress is believed to cause endothelial dysfunction, an early event in cardiovascular diseases (CVD). Statin, as HMG-CoA reductase inhibitor, prevents endothelial dysfunction in CVD. However, the molecular mechanism of statin-mediated normalization of endothelial function is not completely elucidated.
View Article and Find Full Text PDFBackground: GTP cyclohydrolase 1 (GCH1) deficiency is critical for endothelial nitric oxide synthase uncoupling in endothelial dysfunction. MicroRNAs (miRs) are a class of regulatory RNAs that negatively regulate gene expression. We investigated whether statins prevent endothelial dysfunction via miR-dependent GCH1 upregulation.
View Article and Find Full Text PDFRationale: Amino acid substitutions in the neuraminidase of the influenza virus are the main cause of the emergence of resistance to zanamivir or oseltamivir during seasonal influenza treatment; they are the result of non-synonymous mutations in the viral genome that can be successfully detected by polymer chain reaction (PCR)-based approaches. There is always an urgent need to detect variation in amino acid sequences directly at the protein level. Mass spectrometry coupled with de novo sequencing has been explored as an alternative and straightforward strategy for detecting amino acid substitutions, as well - this approach is the primary focus of the present study.
View Article and Find Full Text PDFBackground: Brucella may establish chronic infection by regulating the expression of miRNAs. However, the role of miRNAs in modulating the intracellular growth of Brucella remains unclear.
Results: In this study, we show that Brucella.
Aims: Aspirin has been used for the secondary prevention and treatment of cardiovascular disease for several decades. We investigated the roles of transcriptional factor activator protein 2α (AP-2α) in the beneficial effects of aspirin in the growth and vulnerability of atherosclerotic plaque.
Methods And Results: In mice deficient of apolipoprotein E (Apoe-/-), aspirin (20, 50 mg/kg/day) suppressed the progression of atherosclerosis in aortic roots and increased the plaque stability in carotid atherosclerotic plaques induced by collar-placement.
The intracellular pathogen Brucella abortus (B. abortus) survives and replicates inside host cells within the Brucella-containing vacuole, in which membrane contains a small GTPase Rab1. Here, we reported that Rab1 mediates B.
View Article and Find Full Text PDFOsteoclasts (OC) are large multinucleated cells derived from monocyte/macrophage precursors. Suppressing osteoclastogenesis is considered as an effective therapeutic approach to erosive bone disease. The root of Acorus tatarinowii Schott, a well-known traditional Chinese medicine was used to treat rheumatosis and other inflammatory disease.
View Article and Find Full Text PDFAcute respiratory distress syndrome (ARDS),which is inflammatory disorder of the lung, which is caused by pneumonia, aspiration of gastric contents, trauma and sepsis, results in widespread lung inflammation and increased pulmonary vascular permeability. Its pathogenesis is complicated and the mortality is high. Thus, there is a tremendous need for new therapies.
View Article and Find Full Text PDFUnlabelled: AMP-activated protein kinase (AMPK) is a serine/threonine kinase that is well conserved during evolution. AMPK activation inhibits production of reactive oxygen species (ROS) in cells via suppression of NADPH oxidase. However, the role of AMPK during the process of Brucella infection remains unknown.
View Article and Find Full Text PDFIt has been reported that DOK3 protein negatively regulates LPS responses and endotoxin tolerance in mice. However, the role of DOK3 in the development of acute respiratory distress syndrome (ARDS) remains unknown. In this study, we showed that DOK3 is degraded in the lung tissues of LPS-induced ARDS.
View Article and Find Full Text PDF