Publications by authors named "Qirui Ye"

As a crucial component responsible for the oxygen reduction reaction (ORR), cobalt-rich perovskite-type cathode materials have been extensively investigated in protonic ceramic fuel cell (PCFC). However, their widespread application at a commercial scale is considerably hindered by the high cost and inadequate stability. In response to these weaknesses, the study presents a novel cobalt-free perovskite oxide, BaLa(FeZn)O (BLFZ0.

View Article and Find Full Text PDF

Developing high-performance and cost-effective cathodes is ever-increasingly vital for the advancement of intermediate-temperature solid oxide fuel cells (IT-SOFCs). To facilitate the popularization of nonprecious metallic and cobalt-free oxygen reduction electrodes, herein, we propose a novel perovskite-based BaFeO (BF) matrix, BaSrFeYO (BSFY), as a highly active cathode for IT-SOFCs. To our satisfaction, the BSFY electrode showcases a low area-specific resistance of 0.

View Article and Find Full Text PDF

Developing low-cost, efficient, and durable cobalt-free perovskite oxides for oxygen reduction reaction at intermediate-to-low temperatures is crucial to enhance the viability of solid oxide fuel cells (SOFCs), a promising ingredient for establishing a more sustainable future. Herein, a highly active and robust cobalt-free perovskite Ba Sr Fe P O (BSFP) oxygen electrode via a facile co-doping strategy for intermediate-to-low temperature SOFCs (ILT-SOFCs) is reported by a combined experimental and theoretical approach. Attributed to stable and oxygen defect-rich structure, and remarkable intrinsic oxygen transport kinetics, the BSFP cathode shows exceptional catalytic performance, including record-level power output among iron-based perovskite cathodes (1464 mW cm at 600 °C), low area-specific resistance (≈0.

View Article and Find Full Text PDF