Publications by authors named "Qirui Ren"

In this work, we design and fabricate a telecom band quantum light source (QLS) on a silicon photonic chip, which integrates a piece of a long silicon waveguide as the nonlinear medium for spontaneous four-wave mixing (SFWM) and five narrow FSR-free bandpass filters based on a grating-assisted contra-directional coupler (GACDC). Two optical filtering functions of the silicon integrated QLS have been demonstrated. First, the QLS supports two tunable outputs of photon pair generations by four GACDC filters.

View Article and Find Full Text PDF

Magnetic kagome materials provide a fascinating playground for exploring the interplay of magnetism, correlation and topology. Many magnetic kagome systems have been reported including the binary FeX (X = Sn, Ge; m:n = 3:1, 3:2, 1:1) family and the rare earth RMnSn (R = rare earth) family, where their kagome flat bands are calculated to be near the Fermi level in the paramagnetic phase. While partially filling a kagome flat band is predicted to give rise to a Stoner-type ferromagnetism, experimental visualization of the magnetic splitting across the ordering temperature has not been reported for any of these systems due to the high ordering temperatures, hence leaving the nature of magnetism in kagome magnets an open question.

View Article and Find Full Text PDF

This brief presents an analog front-end (AFE) for the detection of electroencephalogram (EEG) signals. The AFE is composed of four sections, chopper-stabilized amplifiers, ripple suppression circuit, RRAM-based lowpass FIR filter, and 8-bit SAR ADC. This is the first time that an RRAM-based lowpass FIR filter has been introduced in an EEG AFE, where the bio-plausible characteristics of RRAM are utilized to analyze signals in the analog domain with high efficiency.

View Article and Find Full Text PDF

Radio frequency identification technology (RFID) has empowered a wide variety of automation industries. Aiming at the current light-weight RFID encryption scheme with limited information protection methods, combined with the physical unclonable function (PUF) composed of resistive random access memory (RRAM), a new type of high-efficiency reconfigurable strong PUF circuit structure is proposed in this paper. Experimental results show that the proposed PUF shows an almost ideal value (50%) of inter-chip hamming distance (HD) (µ/σ = 0.

View Article and Find Full Text PDF

Three-dimensional vertical resistive random access memory (VRRAM) is proposed as a promising candidate for increasing resistive memory storage density, but the performance evaluation mechanism of 3-D VRRAM arrays is still not mature enough. The previous approach to evaluating the performance of 3-D VRRAM was based on the write and read margin. However, the leakage current (LC) of the 3-D VRRAM array is a concern as well.

View Article and Find Full Text PDF

Efficient and accurate semantic segmentation is the key technique for automatic remote sensing image analysis. While there have been many segmentation methods based on traditional hand-craft feature extractors, it is still challenging to process high-resolution and large-scale remote sensing images. In this work, a novel patch-wise semantic segmentation method with a new training strategy based on fully convolutional networks is presented to segment common land resources.

View Article and Find Full Text PDF