Repeated runs of the same program can generate different molecular phylogenies from identical data sets under the same analytical conditions. This lack of reproducibility of inferred phylogenies casts a long shadow on downstream research employing these phylogenies in areas such as comparative genomics, systematics, and functional biology. We have assessed the relative accuracies and log-likelihoods of alternative phylogenies generated for computer-simulated and empirical data sets.
View Article and Find Full Text PDFMotivation: Building reliable phylogenies from very large collections of sequences with a limited number of phylogenetically informative sites is challenging because sequencing errors and recurrent/backward mutations interfere with the phylogenetic signal, confounding true evolutionary relationships. Massive global efforts of sequencing genomes and reconstructing the phylogeny of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains exemplify these difficulties since there are only hundreds of phylogenetically informative sites but millions of genomes. For such datasets, we set out to develop a method for building the phylogenetic tree of genomic haplotypes consisting of positions harboring common variants to improve the signal-to-noise ratio for more accurate and fast phylogenetic inference of resolvable phylogenetic features.
View Article and Find Full Text PDFMotivation: Building reliable phylogenies from very large collections of sequences with a limited number of phylogenetically informative sites is challenging because sequencing errors and recurrent/backward mutations interfere with the phylogenetic signal, confounding true evolutionary relationships. Massive global efforts of sequencing genomes and reconstructing the phylogeny of SARS-CoV-2 strains exemplify these difficulties since there are only hundreds of phylogenetically informative sites and millions of genomes. For such datasets, we set out to develop a method for building the phylogenetic tree of genomic haplotypes consisting of positions harboring common variants to improve the signal-to-noise ratio for more accurate phylogenetic inference of resolvable phylogenetic features.
View Article and Find Full Text PDFRapid relaxed-clock dating methods are frequently applied to analyze phylogenomic data sets containing hundreds to thousands of sequences because of their accuracy and computational efficiency. However, the relative performance of different rapid dating methods is yet to be compared on the same data sets, and, thus, the power and pitfalls of selecting among these approaches remain unclear. We compared the accuracy, bias, and coverage probabilities of RelTime, treePL, and least-squares dating time estimates by applying them to analyze computer-simulated data sets in which evolutionary rates varied extensively among branches in the phylogeny.
View Article and Find Full Text PDFMotivation: Precise time calibrations needed to estimate ages of species divergence are not always available due to fossil records' incompleteness. Consequently, clock calibrations available for Bayesian dating analyses can be few and diffused, i.e.
View Article and Find Full Text PDFBackground: Matrices of morphological characters are frequently used for dating species divergence times in systematics. In some studies, morphological and molecular character data from living taxa are combined, whereas others use morphological characters from extinct taxa as well. We investigated whether morphological data produce time estimates that are concordant with molecular data.
View Article and Find Full Text PDFGlobal sequencing of genomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to reveal new genetic variants that are the key to unraveling its early evolutionary history and tracking its global spread over time. Here we present the heretofore cryptic mutational history and spatiotemporal dynamics of SARS-CoV-2 from an analysis of thousands of high-quality genomes. We report the likely most recent common ancestor of SARS-CoV-2, reconstructed through a novel application and advancement of computational methods initially developed to infer the mutational history of tumor cells in a patient.
View Article and Find Full Text PDFMotivation: As the number and diversity of species and genes grow in contemporary datasets, two common assumptions made in all molecular dating methods, namely the time-reversibility and stationarity of the substitution process, become untenable. No software tools for molecular dating allow researchers to relax these two assumptions in their data analyses. Frequently the same General Time Reversible (GTR) model across lineages along with a gamma (+Γ) distributed rates across sites is used in relaxed clock analyses, which assumes time-reversibility and stationarity of the substitution process.
View Article and Find Full Text PDFWe report the likely most recent common ancestor of SARS-CoV-2 - the coronavirus that causes COVID-19. This progenitor SARS-CoV-2 genome was recovered through a novel application and advancement of computational methods initially developed to reconstruct the mutational history of tumor cells in a patient. The progenitor differs from the earliest coronaviruses sampled in China by three variants, implying that none of the earliest patients represent the index case or gave rise to all the human infections.
View Article and Find Full Text PDFSimultaneous molecular dating of population and species divergences is essential in many biological investigations, including phylogeography, phylodynamics and species delimitation studies. In these investigations, multiple sequence alignments consist of both intra- and interspecies samples (mixed samples). As a result, the phylogenetic trees contain interspecies, interpopulation and within-population divergences.
View Article and Find Full Text PDFThe conventional wisdom in molecular evolution is to apply parameter-rich models of nucleotide and amino acid substitutions for estimating divergence times. However, the actual extent of the difference between time estimates produced by highly complex models compared with those from simple models is yet to be quantified for contemporary data sets that frequently contain sequences from many species and genes. In a reanalysis of many large multispecies alignments from diverse groups of taxa, we found that the use of the simplest models can produce divergence time estimates and credibility intervals similar to those obtained from the complex models applied in the original studies.
View Article and Find Full Text PDFPathogen timetrees are phylogenies scaled to time. They reveal the temporal history of a pathogen spread through the populations as captured in the evolutionary history of strains. These timetrees are inferred by using molecular sequences of pathogenic strains sampled at different times.
View Article and Find Full Text PDFConfidence intervals (CIs) depict the statistical uncertainty surrounding evolutionary divergence time estimates. They capture variance contributed by the finite number of sequences and sites used in the alignment, deviations of evolutionary rates from a strict molecular clock in a phylogeny, and uncertainty associated with clock calibrations. Reliable tests of biological hypotheses demand reliable CIs.
View Article and Find Full Text PDFNew species arise from pre-existing species and inherit similar genomes and environments. This predicts greater similarity of the tempo of molecular evolution between direct ancestors and descendants, resulting in autocorrelation of evolutionary rates in the tree of life. Surprisingly, molecular sequence data have not confirmed this expectation, possibly because available methods lack the power to detect autocorrelated rates.
View Article and Find Full Text PDFRelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets.
View Article and Find Full Text PDFThe RelTime method estimates divergence times when evolutionary rates vary among lineages. Theoretical analyses show that RelTime relaxes the strict molecular clock throughout a molecular phylogeny, and it performs well in the analyses of empirical and computer simulated data sets in which evolutionary rates are variable. Lozano-Fernandez et al.
View Article and Find Full Text PDFOngoing advances in sequencing technology have led to an explosive expansion in the molecular data available for building increasingly larger and more comprehensive timetrees. However, Bayesian relaxed-clock approaches frequently used to infer these timetrees impose a large computational burden and discourage critical assessment of the robustness of inferred times to model assumptions, influence of calibrations, and selection of optimal data subsets. We analyzed eight large, recently published, empirical datasets to compare time estimates produced by RelTime (a non-Bayesian method) with those reported by using Bayesian approaches.
View Article and Find Full Text PDFFor decades, it has remained unknown whether artiodactyls, such as cattle, pigs, and sheep, express immunoglobulin D (IgD), although the δ gene was identified in these species nearly 10 years ago. By developing a mouse anti-bovine IgD heavy chain monoclonal antibody (13C2), we show that secreted bovine IgD was present mainly as a monomer in serum and was heavily glycosylated by N-linked saccharides. Nonetheless, IgD was detectable in some but not all of the Holstein cattle examined.
View Article and Find Full Text PDF