Publications by authors named "Qiongzhen Liu"

Microwave and infrared-thermal radiation-compatible shielding fabrics represent an important direction in the development of wearable protective fabrics. Nevertheless, effectively and conveniently integrating compatible shielding functions into fabrics while maintaining breathability and moisture permeability remains a significant challenge. Here, we take hydrophilic PVA--PE nanofibrous film-coated PET fabric (NFs/PET) as a flexible substrate and deposit a dielectric/conductive (SiO/Al) bilayer film via magnetron sputtering.

View Article and Find Full Text PDF

Conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) fibers with high electrical conductivity, flexibility, and robustness are urgently needed for constructing wearable fiber-based electronics. In this study, the highly conductive (4288 S/cm), ultrastrong (a high tensile strength of 956 MPa), and flexible (a low Young's modulus of 3.8 GPa) PEDOT:PSS/1-ethyl-3-methylimidazolium dicyanamide (EMIM:DCA) (P/ED) fiber was prepared by wet-spinning and a subsequent HSO-immersion-drawing process.

View Article and Find Full Text PDF

Herein, in the present work two series of thermoplastic polyurethane (TPU) nanofibers were manufactured using the electrospinning techniques with ZnO and CuO nanoparticles for a potential use as an elastic functional layer in antimicrobial applications. Percentages of 0%, 2 wt%, and 4 wt% of the nanoparticles were used. The morphological characterization of the electrospun TPU and TPU/NPs composites nanofibers were observed by using scanning electron microscopy to show the average fiber diameter and it was in the range of 90-150 nm with a significant impact of the nanoparticle type.

View Article and Find Full Text PDF
Article Synopsis
  • * Dimethyl sulfoxide (DMSO) and ionic liquids (ILs) are used as modifiers, resulting in a new flexible coating, P/D/ED, that shows significant improvements in strain and stability compared to the standard PEDOT:PSS.
  • * The new P/D/ED-coated fabric demonstrates a high output power density of 136.1 mW/m at a temperature difference of 40.8 K, indicating its potential as an effective wearable power source.
View Article and Find Full Text PDF

Multi-walled carbon nanotubes (MWCNT) play a synergistic role with conducting polymer in practical applications such as biological sensing. In this paper, multi-walled carbon nanotube and polypyrrole (PPy) composites were prepared on a fiber surface for the first time, and their morphology and electrical properties were characterized. Compared with PPy-coated fiber, the presence of carbon nanotubes induced the growth of large areas of PPy nanowires.

View Article and Find Full Text PDF

The rapid development of wearable devices puts forward higher requirements for mass-produced integrated smart systems that incorporate multiple electric components, such as energy supplying, multisensing, and communicating. To synchronously realize continuously self-powering, multifunctional sensing, distinguish signals from different stimuli, and productively design and fabricate a large-area sensing array, an all-fabric-based self-powered pressure-temperature-sensing electronic skin (e-skin) was prepared in this study by assembling highly flexible and compressible 3D spacer fabric (SF) and the thermoelectric poly(3,4-ethylenedioxythiophene)poly(styrenesulfonate) (PEDOT:PSS). The all-fabric-based e-skin can efficiently and accurately sense the temperature with a detection resolution of 0.

View Article and Find Full Text PDF

Three-dimensional (3D) graphene aerogels (GAs) have attracted huge attention from researchers due to their great potential in vast applications. The hydrothermal reaction combined with freeze-drying using graphene oxide (GO) as a precursor has proven to be an effective method for obtaining relatively well-structured pure GAs. However, insufficient mechanical strength and low compressibility of the materials still limit their practical applications.

View Article and Find Full Text PDF

Recent literature reported the adverse effects of high-fat diet (HFD) on animal's emotional and cognitive function. An HFD-induced obesity/hyperlipidemia is accompanied by hormonal and neurochemical changes that can lead to depression. The important roles of gut-derived serotonin (5-Hydroxytryptamine, 5-HT) during this processing have been increasingly focused.

View Article and Find Full Text PDF

Fiber-based organic electrochemical transistors (FECTs) provide a new platform for the realization of an ultrafast and ultrasensitive biosensor, especially for the wearable dopamine (DA)-monitoring device. Here, we presented a fully filament-integrated fabric, it exhibited remarkable mechanical compatibility with the human body, and the minimum sensing unit was an organic electrochemical transistor (OECT) based on PVA- co-PE nanofibers (NFs) and polypyrrole (PPy) nanofiber network. The introduction of NFs notably increased the specific surface area and hydrophilicity of the PA6 filament, resulting in the formation of a large area of intertwined PPy nanofiber network.

View Article and Find Full Text PDF

Wearable pressure sensors with ultrahigh sensitivity and flexibility have garnered tremendous attention because of their abilities to mimic the human somatosensory system and perceive surrounding pressure distribution. Herein, an ultrasensitive pressure sensor was fabricated with surface-patterned nanofibrous membranes (SPNMs) via a facile replica method from available plain-weaved nylon textiles. The SPNMs were composed of internal three-dimensional interpenetrating polyolefin elastomer nanofibers and silver nanowires (Ag NWs).

View Article and Find Full Text PDF

Background: A high-fat diet (HFD)-induced obesity/hyperlipidemia is accompanied by hormonal and neurochemical changes that can be associated with depression. Emerging studies indicate that simvastatin (SMV, decreasing cholesterol levels) has therapeutic effects on neurological and neuropsychiatric diseases through hippocampal-dependent function. However, the studies on the HFD exposure in adolescent animals, which investigate the neuroprotective effects of SMV on the hippocampal morphology, serotonin (5-HT) system and inflammation, are limited.

View Article and Find Full Text PDF

Fiber-shaped strain sensors with great flexibility and knittability have been tremendously concerned due to the wide applications in health manager devices, especially in human motion detection and physiological signal monitoring. Herein, a novel fiber-shaped strain sensor has been designed and prepared by interpenetrating Ag nanowires (NWs) into polyolefin elastomer nanofibrous yarn. The easy-to-obtain structure and simple roll-to-roll process make the continuous large-scale production of nanofibrous composite yarn possible.

View Article and Find Full Text PDF

Recent evidence has established that consumption of High-fat diet (HFD)-induced obesity is associated with deficits in hippocampus-dependent memory/learning and mood states. Nevertheless the link between obesity and emotional disorders still remains to be elucidated. This issue is of particular interest during adolescence, which is important period for shaping learning/memory and mood regulation that can be sensitive to the detrimental effects of HFD.

View Article and Find Full Text PDF

Novel woven fiber organic electrochemical transistors based on polypyrrole (PPy) nanowires and reduced graphene oxide (rGO) have been prepared. SEM revealed that the introduction of rGO nanosheets could induce the growth and increase the amount of PPy nanowires. Moreover, it could enhance the electrical performance of fiber transistors.

View Article and Find Full Text PDF

In this study, poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane was activated by sodium hydroxide and cyanuric chloride, and then the activated membranes were functionalized by 1,3-propanediamine, hexamethylenediamine and diethylenetriamine to be affinity membranes for bilirubin removal, respectively. The chemical structures and morphologies of membranes were investigated by SEM, FTIR and XPS. And the adsorption ability of different amine-functionalized nanofibrous membranes for bilirubin was characterized.

View Article and Find Full Text PDF

Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 10(4) and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) encompass complex bioelectrocatalytic reactions that converting chemical energy of organic compounds to electrical energy. Improving the anode configuration is thought to be a critical step for enhancing MFCs performance. In present study, a hierarchically structured textile polypyrrole/poly(vinyl alcohol-co-polyethylene) nanofibers/poly(ethylene terephthalate) (referred to PPy/NFs/PET) is shown to be excellent anode for MFCs.

View Article and Find Full Text PDF

Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances.

View Article and Find Full Text PDF

The bioluminescent reaction catalyzed by firefly luciferase has become widely established as an outstanding analytical system for assay of adenosine triphosphate (ATP). When in solution, the luciferase is unstable and cannot be reused. The problem can be partially solved by immobilizing the luciferase on solid substrates.

View Article and Find Full Text PDF

Stress has been reported to induce alterations of skin pigmentary response. Acute stress is associated with increased turnover of serotonin (5-hydroxytryptamine; 5-HT) whereas chronic stress causes a decrease. 5-HT receptors have been detected in pigment cells, indicating their role in skin pigmentation.

View Article and Find Full Text PDF