Publications by authors named "Qiongxiang Liu"

Article Synopsis
  • Retrogradation is essential for making resistant starch, specifically resistant starch type-III (RS3), with a study exploring how different temperature conditions affect its properties and digestibility.
  • The experiment involved treating normal maize starch (NM) and Hylon VII (HAM) with autoclave-microwave processing, followed by retrogradation under isothermal and various temperature-cycled conditions.
  • Results indicated that temperature-cycled retrogradation was more effective in creating a well-ordered crystalline structure in RS3, resulting in higher resistant starch content and altered digestibility, especially in the HAM samples.
View Article and Find Full Text PDF

This study investigated the effect of removing proteins, lipids and starch on the structure, physicochemical properties and digestion properties of rice flour (with 30% moisture) treated with heat moisture treatment (HMT). According to the results, HMT caused the adhesion and agglomeration of the rice flour, promoted the binding between starch, protein and lipid molecular chains and led to the formation of complexes (especially starch-lipid complexes), which hindered the removal of non-starch components. Compared to the untreated rice flour, the HMT treated lipid-removal rice flour had small changes in their crystallinity, gelatinization temperature and viscosity property.

View Article and Find Full Text PDF

This study investigated the effects of annealing on the structural and physicochemical properties of rice starch below the onset temperature (To) by 5 °C and 15 °C. The results revealed that annealing improved the gelatinization temperature of rice starch, decreased the swelling power, solubility, and paste viscosity of rice starch, and had no significant effects on the morphological structure and crystal configuration of rice starch. In one-step annealing, the annealing temperature of 60 °C is more conducive to the rearrangement of starch molecules, so its crystallinity, short-range ordered structure, and gelatinization temperature are higher than at 50 °C; however, its RDS, SDS, and RS contents will be increased.

View Article and Find Full Text PDF

Pregelatinized starch (PGS) is often used to improve the processing quality of foodstuffs, but little attention has been paid to the effects of different reheating methods and degree of starch gelatinization (DSG) on their rheological and textural properties. In this study, pregelatinized rice starches (RS) with gelatinization degrees ranging from 58% to 100% were prepared via different Rapid Visco Analyser (RVA) heating procedures and reheated in various methods, including high-power microwave (HM), low-power microwave (LM), and water bath. The rheological behavior and textural properties were explored, and the results demonstrated that the consistency, gel strength, hardness, and springiness of PGS in all tested samples decreased significantly after reheating.

View Article and Find Full Text PDF